In response to the growing demand for the global energy supply chain, wind power has become an important research subject among studies in the advancement of renewable energy sources. The major concern is the stochastic volatility of weather conditions that hinder the development of wind power forecasting approaches. To address this issue, the current study proposes a weather prediction method divided into two models for wind speed and atmospheric system forecasting. First, the data-based model incorporated with wavelet transform and recurrent neural networks is employed to predict the wind speed. Second, the physics-informed echo state network was used to learn the chaotic behaviour of the atmospheric system. The findings were validated with a case study conducted on wind speed data from Turkmenistan. The results suggest the out-performance of physics-informed model for accurate and reliable forecasting analysis, which indicates the potential for implementation in wind energy analysis.
In response to the growing demand for the global energy supply chain, wind power has become an important research subject among studies in the advancement of renewable energy sources. The major concern is the stochastic volatility of weather conditions that hinder the development of wind power forecasting approaches. To address this issue, the current study proposes a weather prediction method divided into two models for wind speed and atmospheric system forecasting. First, the data-based model incorporated with wavelet transform and recurrent neural networks is employed to predict the wind speed. Second, the physics-informed echo state network was used to learn the chaotic behaviour of the atmospheric system. The findings were validated with a case study conducted on wind speed data from Turkmenistan. The results suggest the out-performance of physics-informed model for accurate and reliable forecasting analysis, which indicates the potential for implementation in wind energy analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.