In this paper we deal with Jain-Schurer operators. We give an estimate, related to the degree of approximation, via K-functional. Also, we present a Voronovskaja-type result. Moreover, we show that the Jain-Schurer operator preserves the properties of a modulus of continuity function. Finally, we study monotonicity of the sequence of the Jain-Schurer operators when the attached function is convex and non-decreasing.
Abstract. We introduce certain linear positive operators and study some approximation properties of these operators in the space of functions, continuous on a compact set, of two variables. We also find the order of this approximation by using modulus of continuity. Moreover we define an rth order generalization of these operators and observe its approximation properties. Furthermore, we study the convergence of the linear positive operators in a weighted space of functions of two variables and find the rate of this convergence using weighted modulus of continuity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.