This study was undertaken to assess the extent of genetic variation in barley simple sequence repeats (SSRs)
Genetic polymorphisms of ten microsatellite DNA loci were examined among 238 accessions of landraces and cultivars that represent a significant portion of the distribution range for both indica and japonica groups of cultivated rice. In all, 93 alleles were identified with these ten markers. The number of alleles varied from a low of 3 or 4 at each of four loci, to an intermediate value of 9-14 at five loci, and to an extraordinarily high 25 at one locus. The numbers of alleles per locus are much larger than those detected using other types of markers. The number of alleles detected at a locus is significantly correlated with the number of simple sequence repeats in the targeted microsatellite DNA. Indica rice has about 14% more alleles than japonica rice, and such allele number differences are more pronounced in landraces than in cultivars. The indica-japonica differentiation component accounted for about 10% of the diversity in the total sample, and twice as much differentiation was detected in cultivars as in landraces. About two-thirds as many alleles were observed in cultivars as in landraces; another two-thirds of the alleles in the cultivar group were found in modern elite cultivars or parents of hybrid rice. The majority of the simple sequence repeat (SSR) alleles that were present in high or intermediate frequencies in landraces ultimately survived into modern elite cultivars and hybrids. The greater resolving power and the efficient production of massive amounts of SSR data may be particularly useful for germplasm assessment and evolutionary studies of crop plants.
Soil compaction causes substantial reduction in agriculture productivity and has always been of great distress for farmers. Intensive agriculture seems to be more crucial in causing compaction. High mechanical load, less crop diversification, intensive grazing, and irrigation methods lead to soil compaction. It is further exasperated when these factors are accompanied with low organic matter, animal trampling, engine vibrations, and tillage at high moisture contents. Soil compaction increases soil bulk density and soil strength, while decreases porosity, aggregate stability index, soil hydraulic conductivity, and nutrient availability, thus reduces soil health. Consequently, it lowers crop performance via stunted aboveground growth coupled with reduced root growth. This paper reviews the potential causes of compaction and its consequences that have been published in last two decades. Various morphological and physiological alterations in plant as result of soil compaction have also been discussed in this review.
Rheumatoid arthritis (RA) is a systemic autoimmune disease primarily affecting joints and is featured by chronic synovial inflammation and angiogenesis. We employed a bovine type-II collagen (BIIC)-induced Sprague–Dawley rat arthritis model and an in vitro RA model based on interleukin (IL)-1β-stimulated rat synovial cells (RSC-364) to explore the preventive effect of resveratrol on RA and the underlying mechanisms. We found that resveratrol ameliorated BIIC-elicited synovitis and RA-related pathological hallmarks such as inflammatory cell infiltration and angiogenesis in the synovial tissue. Also, BIIC-stimulated rats displayed increased serum levels of proinflammatory cytokines and reactive oxygen species (ROS), as manifested by elevated serum malonaldehyde contents combined with reduced superoxide dismutase activity. It is noteworthy that resveratrol abolished BIIC-induced ROS and inflammation, confirming the antioxidative and anti-inflammatory actions of resveratrol in the context of RA. Furthermore, immunoblotting indicated that resveratrol downregulated the increase in the levels of hypoxia-inducible factor-1α (HIF-1α) and that of the activated phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase in IL-1β-stimulated RSC-364 cells. Moreover, we observed that resveratrol-treated RSC-364 cells displayed both G0/G1 cell-cycle arrest and enhanced levels of apoptosis. Altogether, the present evidence established the preventive role of resveratrol in RA progression. Mechanistically, resveratrol inhibits MAPK signaling pathways, likely by reducing ROS accumulation, to suppress the inflammatory response and cell proliferation and to provoke cell apoptosis in the synovial tissue, along with mitigation of HIF-1α-mediated angiogenesis. Thus resveratrol appears to hold great potential for clinical translation as a novel RA therapeutic.
Pairs of homozygous near-isogenic glycinebetaine-containing (Betl/Bet1) and -deficient (betl/bet1) Fδ lines of Zea maysM L. (maize) were tested for differences in their responses to high temperature. Membrane integrity was evaluated by electrolyte leakage, and the in vivo photochemical activity of PSII was inferred from modulated chlorophyll fluorescence. Both variables were more markedly impaired by thermal stress in glycinebetaine-deficient lines. When whole plants, excised whole leaves or leaf segments were subjected to temperatures above 45�C, Betl/Bet1 lines exhibited less membrane injury than their near-isogenic betl/bet1 sister lines. An average difference of 2�C was observed between Betl/Betl and betl/betl lines in the critical temperature threshold which triggered catastrophic membrane damage in vitro. Betl/Bet1 lines also exhibited greater thermostability of PSII function. The empirical fluorescence parameters Fv/Fm and ΔF/F′m, indices of PSII quantum yield (ΦII) in the dark-adapted and illuminated states, respectively, were each markedly reduced in heat-treated leaves of betl/bet1 lines, relative to their Betl/Bet1 sister lines. These results strongly suggest that a single gene confering glycinebetaine accumulation (and/or a tightly linked locus) confers protection against heat destabilisation of leaf plasma membranes as well as the photochemical reactions of PSII in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.