We consider an inverse problem for a one-dimensional heat equation with involution and with periodic boundary conditions with respect to a space variable. This problem simulates the process of heat propagation in a thin closed wire wrapped around a weakly permeable insulation. The inverse problem consists in the restoration (simultaneously with the solution) of an unknown right-hand side of the equation, which depends only on the spatial variable. The conditions for redefinition are initial and final states. Existence and uniqueness results for the given problem are obtained via the method of separation of variables.
We investigate a nonlocal boundary value spectral problem for an ordinary differential equation in an interval. Such problems arise in solving the nonlocal boundary value problem for partial equations by the Fourier method of variable separation. For example, they arise in solving nonstationary problems of diffusion with boundary conditions of Samarskii-Ionkin type. Or they arise in solving problems with stationary diffusion with opposite flows on a part of the interval. The boundary conditions of this problem are regular but not strengthened regular. The principal difference of this problem is: the system of eigenfunctions is comlplete but not forming a basis. Therefore the direct applying of the Fourier method is impossible. Based on these eigenfunctions there is constructed a special system of functions that already forms the basis. However the obtained system is not already the system of the eigenfunctions of the problem. We demonstrate how this new system of functions can be used for solving a nonlocal boundary value problem on the example of the Laplace equation.
A mathematical model of the process of heat diffusion in a closed metal wire is considered. This wire is wrapped around a thin sheet of insulation material. We assume that the insulation is slightly permeable. Because of this, the temperature at the point of the wire on one side of the insulation influences the diffusion process in the wire on the other side of the insulation. Thus, the standard heat equation will change and an extra term with involution will be added. When modeling of this process there arises an initial-boundary value problem for a one-dimensional heat equation with involution and with a boundary condition of periodic type with respect to a spatial variable. We prove the well-posedness of the formulated problem in the class of strong generalized solutions. The use of the method of separation of variables leads to a spectral problem for an ordinary differential operator with involution at the highest derivative. All eigenfunctions of the problem are constructed. In the case when all eigenvalues of the problem are simple, the system of eigenfunctions does not form an unconditional basis. A criterion when this spectral problem can have an infinite number of multiple eigenvalues is proved. Corresponding root subspaces consist of one eigenfunction and one associated function. We prove that the system of root functions forms an unconditional basis and can be used for constructing a solution of the heat conduction problem by the method of separation of variables. We also consider an inverse problem. This is the problem on restoring (simultaneously with solving) of an unknown stationary source of external influence with respect to an additionally known final state. The existence of a unique solution of this inverse problem and its stability with respect to initial and final data are proved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.