Semi-smoked sausages were made with 5%, 10%, 15%, 20%, and 25% replacement of horsemeat by emulsion gel made with offal broth (stomach, kidney, liver, heart, brain, and a miscellaneous trimmings of a horse), pumpkin flour, and egg yolk in a ratio of 5:4:1. The technological, nutritional, oxidative, and rheological (G′ and G″) properties were studied. Sausage water holding capacity (WHC) rose after being incorporated with pumpkin-based emulsion gel (PEG). There was a statistically significant (p < 0.01) improvement in sausage emulsion stability. Lipid oxidation in all samples, especially 5% and 15% addition of emulsion gel samples, was below the rancidity criterion, which is TBARS > 2.0–2.5 mg MDA/kg sample. This really is encouraging because unsaturated fatty acids, such as those found in horsemeat, are easily oxidized. Use of the emulsion gel did not noticeably alter the sausages’ pH. Using emulsion gel considerably reduced the cooking loss (p < 0.05) of sausages and significantly improved texture (p < 0.05). Partial replacement of mixed horsemeat with emulsion gel improved the physicochemical characteristics of semi-smoked sausages. The elasticity modulus (G′) showed that PEG15 (15% of emulsion gel) was the most resilient gel. The least powerful gels (p < 0.05) were PEG20 and PEG25. According to this study, adding a pumpkin-based emulsion gel to the meat matrix could improve the quality of the emulsified meat system and provide important data for related research and companies as strategies to market a healthier and more nutritious product with the necessary quality characteristics.
This study aimed to determine the effect of technological parameters of the production of horse meat minces with the addition of protein-oil emulsion from chicken combs on the functional, technological and physicochemical indicators. Chicken combs were pre-treated with bacterial concentrate to improve their properties. Experimental approach: The ultimate shear stress and technological indicators – water holding capacity and oil holding capacity – were determined to set the optimal time for cutting raw materials. Physicochemical analyses of the meat minces were conducted. Results and conclusions: The research results have shown that the cutting time significantly affects the meat minces' rheological, functional and technological indicators. The optimum mixing time for meat minces is 6 min. Adding a protein-oil emulsion from biotechnologically processed chicken combs, cottonseed oil, and water into the minced horse meat does not significantly affect the nutritional value. Adding 15 – 20% protein-oil emulsion (POE) is recommended to get minced meat with optimal rheological parameters. Novelty and scientific contribution: The research results allow the rational use of poultry by-products.
When slaughtering and processing poultry, large quantities of meat by-products are generated; therefore, the development of the newest methods for processing secondary raw materials is an urgent problem. Animal proteins have relevant technological applications and are also considered as a potential source of bioactive peptides. Current technologies suggested that protein substances can be isolated from meat co-products through microbial hydrolysis. The purpose of the study was to optimize the technological parameters of microbial hydrolysis of hen combs and to analyze the modification of the microstructure and properties of hydrolyzed by-products under the action of bacterial enzymes. Hen’s combs were hydrolyzed by bifidobacteria and concentrated Propionix liquid. A multifactorial experiment was used to determine the optimal conditions for the hydrolysis process. As a result of the study, multiple regression equations and response surfaces were obtained, which describe the process of hydrolysis of hen combs to identify the optimal hydrolysis parameters. Temperature, amount of bacterial concentrate and hydrolysis period are factors that have a significant impact on the degree of hydrolysis. The results of microscopic and dispersed analysis confirm the good hydrolyzability of combs due to changes in structural components and an increase in the amount of smaller protein particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.