This study aims to examine the influence of the co-doped semiconductor nanostructure (Al-Cu):ZnO on the electro-optical properties of the E7 coded pure nematic liquid crystal structures and minimize the threshold voltage of pure E7 liquid crystal. To determine the ideal concentration ratios of the materials for the minimum threshold voltage, we employed different machine learning algorithms. In this context, we first produced twelve composite structures through lab experimentation with different concentrations and created an experimental dataset for the machine learning algorithms. Next, the ideal concentration ratios were estimated using the AdaBoost algorithm, which has an $$R^2$$
R
2
of 96% on the experimental dataset. Finally, additional composite structures having the estimated concentration ratios were produced. The results show that, with the help of the employed machine learning algorithms, the threshold voltage of pure E7 liquid crystal was reduced by 19% via the (Al-Cu):ZnO doping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.