This paper presents a better understanding of the use of finite integration techniques (FIT) and finite element method (FEM) in different types of microstrip antennas in order to determine which numerical method gives relatively more accurate results. Although the theoretical formulation based on Maxwell's equations of both FEM and FIT are approached from different aspects in the literature, there is still a lack of comparison of the same antenna type using different numerical methods employing FEM and FIT. Therefore, in this study, FEM and FIT were applied to two different types of microstrip antennas, and their simulation and experimental results was compared. For the first antenna demonstration, a multilayer structure was chosen to achieve one of the significant parameters. Then, a microstrip antenna with a compact structure was used in the second demonstration. Using these two antennas, the accuracy of FEM and FIT in different structures were compared and all simulated return loss and gain results were verified by the measured results. The experimental demonstrations show that FEM performs better for both types of microstrip antennas while FIT provides an adequate result for two‐layer microstrip antennas.
This study presents the design and the fabrication of a miniaturised sub‐GHz antenna for remote control applications. Miniaturisation techniques were examined to identify the most appropriate topology for sub‐GHz band requirements. First, the design parameters of the antenna were determined, and then, a commercial electromagnetic simulation tool was used for the design and optimisation phases. Then, measurements of the fabricated antenna were undertaken. Parametric studies with several iterations were performed to achieve the best possible results. Second, the effects of the box in which the antenna could be placed were examined as most of such antennas are enclosed by plastic boxes. For this purpose, material properties of a typical industrial box available in the market were studied initially, and the most appropriate material of the box was used in simulations. Finally, a polyamide box with appropriate size was fabricated, and the designed antenna was placed inside the box and the measurements were conducted. The measurement results show that the designed antenna provides resonance at the targeted license‐free band with adequate size for industrial remote controllers.
Highlights• Gain enhancement using multi-layer antenna.• The antenna operates at the European license-free ISM band (863-875MHz).• The antenna meets the harsh environmental conditions of WSNs operating in rural areas.• The antenna is cost-effective, easy to fabricate and can be employed easily in WSNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.