Meta-heuristic algorithms have a high position among academic researchers in various fields, such as science and engineering, in solving optimization problems. These algorithms can provide the most optimal solutions for optimization problems. This paper investigates a new meta-heuristic algorithm called Slime Mould algorithm (SMA) from different optimization aspects. The SMA algorithm was invented due to the fluctuating behavior of slime mold in nature. It has several new features with a unique mathematical model that uses adaptive weights to simulate the biological wave. It provides an optimal pathway for connecting food with high exploration and exploitation ability. As of 2020, many types of research based on SMA have been published in various scientific databases, including IEEE, Elsevier, Springer, Wiley, Tandfonline, MDPI, etc. In this paper, based on SMA, four areas of hybridization, progress, changes, and optimization are covered. The rate of using SMA in the mentioned areas is 15, 36, 7, and 42%, respectively. According to the findings, it can be claimed that SMA has been repeatedly used in solving optimization problems. As a result, it is anticipated that this paper will be beneficial for engineers, professionals, and academic scientists.
As seen in the COVID-19 pandemic, one of the most important measures is physical distance in viruses transmitted from person to person. According to the World Health Organization (WHO), it is mandatory to have a limited number of people in indoor spaces. Depending on the size of the indoors, the number of persons that can fit in that area varies. Then, the size of the indoor area should be measured and the maximum number of people should be calculated accordingly. Computers can be used to ensure the correct application of the capacity rule in indoors monitored by cameras. In this study, a method is proposed to measure the size of a prespecified region in the video and count the people there in real time. According to this method: (1) predetermining the borders of a region on the video, (2) identification and counting of people in this specified region, (3) it is aimed to estimate the size of the specified area and to find the maximum number of people it can take. For this purpose, the You Only Look Once (YOLO) object detection model was used. In addition, Microsoft COCO dataset pre-trained weights were used to identify and label persons. YOLO models were tested separately in the proposed method and their performances were analyzed. Mean average precision (mAP), frame per second (fps), and accuracy rate metrics were found for the detection of persons in the specified region. While the YOLO v3 model achieved the highest value in accuracy rate and mAP (both 0.50 and 0.75) metrics, the YOLO v5s model achieved the highest fps rate among non-Tiny models.
This study focuses on recognizing bird species from their voices, which are frequently seen in Aras River Bird Sanctuary of Iğdır. For this purpose, deep learning methods were used. Acoustic monitoring is carried out to examine and analyze biological diversity. Passive acoustic listeners/recorders are used for this work. In general, various analyzes are performed on the raw sound recordings collected with these recording devices. In this study, raw sound recordings obtained from birds were processed with the methods developed by us, and then bird species were classified with deep learning architectures. Classifications were carried out on 22 bird species that are frequently seen in Aras Bird Sanctuary. Audio recordings were made into 10-second clips and then converted into one-second log mel spectrograms. Convolutional Neural Networks (CNN) and Long Short-Term Memory Neural Networks (LSTM), which are deep learning architectures, were used as classification methods. In addition to these two models, the Transfer Learning method was also used. Highlevel feature vectors of sounds were extracted with VGGish and YAMNet models, which are pre-trained convolutional neural networks, used for transfer learning. These extracted vectors formed the input layers of the classifiers. Accuracy rates and F1 scores of four different architectures were found through experiments. Accordingly, the highest accuracy rate (acc) and F1 score were obtained with the classifier using the VGGish model with 94.2% and 92.8%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.