Thymoquinone (TQ), the major biologically active component isolated from a traditional medicinal herb, Nigella sativa Linn, is a potential chemopreventive and chemotherapeutic compound. Despite the promising antineoplastic activities of TQ, the molecular mechanism of its pharmacologic effects is poorly understood. Here, we report that TQ exhibits antiproliferative effect, induces apoptosis, disrupts mitochondrial membrane potential and triggers the activation of caspases 8, 9 and 3 in myeloblastic leukemia HL-60 cells. The apoptosis induced by TQ was inhibited by a general caspase inhibitor, z-VAD-FMK; a caspase-3-specific inhibitor, z-DEVD-FMK; as well as a caspase-8-specific inhibitor, z-IETD-FMK. Moreover, the caspase-8 inhibitor blocked the TQ-induced activation of caspase-3, PARP cleavage and the release of cytochrome c from mitochondria into the cytoplasm. In addition, TQ treatment of HL-60 cells caused a marked increase in Bax/Bcl2 ratios due to upregulation of Bax and downregulation of Bcl2 proteins. These results indicate that TQ-induced apoptosis is associated with the activation of caspases 8, 9 and 3, with caspase-8 acting as an upstream activator. Activated caspase-8 initiates the release of cytochrome c during TQ-induced apoptosis. Overall, these results offer a potential mechanism for TQ-induced apoptosis in p53-null HL-60 cancer cells. ' 2005 Wiley-Liss, Inc.
Xeroderma pigmentosum (XP) complementation group E gene product, damaged DNA-binding protein 2 (DDB2), is a subunit of the DDB heterodimeric protein complex with high specificity for binding to a variety of DNA helix-distorting lesions. DDB is believed to play a role in the initial step of damage recognition in mammalian nucleotide excision repair (NER) of ultraviolet light (UV)-induced photolesions. It has been shown that DDB2 is rapidly degraded after cellular UV irradiation. However, the relevance of DDB2 degradation to its functionality in NER is still unknown. Here, we have provided evidence that Cullin 4A (CUL-4A), a key component of CUL-4A-based ubiquitin ligase, mediates DDB2 degradation at the damage sites and regulates the recruitment of XPC and the repair of cyclobutane pyrimidine dimers. We have shown that CUL-4A can be identified in a UV-responsive protein complex containing both DDB subunits. CUL-4A was visualized in localized UV-irradiated sites together with DDB2 and XPC. Degradation of DDB2 could be blocked by silencing CUL-4A using small interference RNA or by treating cells with proteasome inhibitor MG132. This blockage resulted in prolonged retention of DDB2 at the subnuclear DNA damage foci within micropore irradiated cells. Knock down of CUL-4A also decreased recruitment of the damage recognition factor, XPC, to the damaged foci and concomitantly reduced the removal of cyclobutane pyrimidine dimers from the entire genome. These results suggest that CUL-4A mediates the proteolytic degradation of DDB2 and that this degradation event, initiated at the lesion sites, regulates damage recognition by XPC during the early steps of NER.
The use of innocuous naturally occurring compounds to overcome drug resistance and cancer recalcitrance is now in the forefront of cancer research. Thymoquinone (TQ) is a bioactive constituent of the volatile oil derived from seeds of Nigella sativa Linn. TQ has shown promising anti-carcinogenic and anti-tumor activities through different mechanisms. However, the effect of TQ on cell signaling and survival pathways in resistant cancer cells has not been fully delineated. Here, we report that TQ greatly inhibits doxorubicin-resistant human breast cancer MCF-7/DOX cell proliferation. TQ treatment increased cellular levels of PTEN proteins, resulting in a substantial decrease of phosphorylated Akt, a known regulator of cell survival. The PTEN expression was accompanied with elevation of PTEN mRNA. TQ arrested MCF-7/DOX cells at G2/M phase and increased cellular levels of p53 and p21 proteins. Flow cytometric analysis and agarose gel electrophoresis revealed a significant increase in Sub-G1 cell population and appearance of DNA ladders following TQ treatment, indicating cellular apoptosis. TQ-induced apoptosis was associated with disrupted mitochondrial membrane potential and activation of caspases and PARP cleavage in MCF-7/DOX cells. Moreover, TQ treatment increased Bax/Bcl2 ratio via up-regulating Bax and down-regulating Bcl2 proteins. More importantly, PTEN silencing by target specific siRNA enabled the suppression of TQ-induced apoptosis resulting in increased cell survival. Our results reveal that up-regulation of the key upstream signaling factor, PTEN, in MCF-7/DOX cells inhibited Akt phosphorylation, which ultimately causes increase in their regulatory p53 levels affecting the induction of G2/M cell cycle arrest and apoptosis. Overall results provide mechanistic insights for understanding the molecular basis and utility of the anti-tumor activity of TQ.
Accessibility within chromatin is an important factor in the prompt removal of UV-induced DNA damage by nucleotide excision repair (NER). Chromatin remodeling by the SWI/SNF complex has been shown to play an important modulating role in NER in vitro and yeast in vivo. Nevertheless, the molecular basis of cross-talk between SWI/SNF and NER in mammalian cells is not fully understood. Here, we show that knockdown of Brg1, the ATPase subunit of SWI/SNF, negatively affects the elimination of cyclobutane pyrimidine dimers (CPD), but not of pyrimidine (6, 4)pyrimidone photoproducts (6-4PP) following UV irradiation of mammalian cells. Brg1-deficient cells exhibit a lower chromatin relaxation as well as impaired recruitment of downstream NER factors, XPG and PCNA, to UV lesions. However, the assembly of upstream NER factors, DDB2 and XPC, at the damage site was unaffected by Brg1 knockdown. Interestingly, Brg1 interacts with XPC within chromatin and is recruited to UV-damaged sites in a DDB2-and XPC-dependent manner. Also, postirradiation decrease of XPC levels occurred more rapidly in Brg1-deficient than normal cells. Conversely, XPC transcription remained unaltered upon Brg1 knockdown indicating that Brg1 affects the stability of XPC protein following irradiation. Thus, Brg1 facilitates different stages of NER by initially modulating UV-induced chromatin relaxation and stabilizing XPC at the damage sites, and subsequently stimulating the recruitment of XPG and PCNA to successfully culminate the repair.
A Wani (2014) USP3 counteracts RNF168 via deubiquitinating H2A and γH2AX at lysine 13 and 15, Cell Cycle, 13:1, 106-114,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.