The synthetic compounds, Tilorone and Cridanimod, have the antiviral activity which initially had been ascribed to the capacity to induce interferon. Both drugs induce interferon in mice but not in humans. This study investigates whether these compounds have the antiviral activity in mice and rats since rats more closely resemble the human response. Viral-infection models were created in CD-1 mice and Wistar rats. Three strains of Venezuelan equine encephalitis virus were tested for the performance in these models. One virus strain is the molecularly cloned attenuated vaccine. The second strain has major virulence determinants converted to the wild-type state which are present in virulent strains. The third virus has wild-type virulence determinants, and in addition, is engineered to express green fluorescent protein. Experimentally infected animals received Tilorone or Cridanimod, and their treatment was equivalent to the pharmacopoeia-recomended human treatment regimen. Tilorone and Cridanimod show the antiviral activity in mice and rats and protect the mice from death. In rats, both drugs diminish the viremia. These drugs do not induce interferon-alpha or interferon-beta in rats. The presented observations allow postulating the existence of an interferon-independent and species-independent mechanism of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.