Abstract. Digital mammographic image processing often requires a previous application of filters to reduce the noise level of the image while preserving important details. This may improve the quality of digital mammographic images and contribute to an accurate diagnosis. Denoising methods based on linear filters cannot preserve image structures such as edges in the same way that methods based on nonlinear filters can do it. Recently, a nonlinear denoising method based on ICA has been introduced [1,2] for natural and artificial images. The functioning of the ICA denoising method depends on the statistics of the images. In this paper, we show that mammograms have statistics appropriate for ICA denoising and we demonstrate experimentally that ICA denoising is a suitable method to remove the noise of digitised mammographys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.