Gut bacterial microbiome dysbiosis in type 2 Diabetes Mellitus (T2DM) has been reported, but such an association with Diabetic Retinopathy (DR) is not known. We explored possible link between gut bacterial microbiome dysbiosis and DR. Using fecal samples of healthy controls (HC) and people with T2DM with/without DR, gut bacterial communities were analysed using 16S rRNA gene sequencing and data analysed using QIIME and R software. Dysbiosis in the gut microbiomes, at phyla and genera level, was observed in people with T2DM and DR compared to HC. People with DR exhibited greater discrimination from HC. Microbiomes of people with T2DM and DR were also significantly different. Both DM and DR microbiomes showed a decrease in anti-inflammatory, probiotic and other bacteria that could be pathogenic, compared to HC, and the observed change was more pronounced in people with DR. This is the first report demonstrating dysbiosis in the gut microbiome (alteration in the diversity and abundance at the phyla and genera level) in people with DR compared to HC. Such studies would help in developing novel and targeted therapies to improve treatment of DR.
Uveitis (UVT), an inflammatory disease of the eye significantly contributes to vision impairment and blindness. Uveitis is associated with systemic infectious and autoimmune diseases, but in most cases, the aetiology remains unidentified. Dysbiosis in the gut microbiome has been implicated in autoimmune diseases, inflammatory diseases, cancers and mental disorders. In a mice model of autoimmune UVT, it was observed that manipulating the gut microbiome reduces the inflammation and disease severity. Further, alterations in the bacterial gut microbiome and their metabolites were reported in UVT patients from a Chinese cohort. Hence, it is worth comparing the bacterial gut microbiome of UVT patients with that of healthy controls (HC) to ascertain whether dysbiosis of the gut microbiome has implications in UVT. Our analyses showed reduced diversity of several anti-inflammatory organisms including ,, , and members of Lachnospiraceae and Ruminococcaceae families, and enrichment of (proinflammatory) and (pathogenic) OTUs in UVT microbiomes compared to HC. In addition, decrease in probiotic and antibacterial organisms was observed in UVT compared to HC microbiomes. Heatmap and PCoA plots also indicated significant variations in the microbiomes of UVT versus HC. This is the first study demonstrating dysbiosis in the gut bacterial communities of UVT patients in an Indian cohort and suggests a role of the gut microbiome in the pathophysiology of UVT.
Studies have documented dysbiosis in the gut mycobiome in people with Type 2 diabetes mellitus (T2DM). However, it is not known whether dysbiosis in the gut mycobiome of T2DM patients would be reflected in people with diabetic retinopathy (DR) and if so, is the observed mycobiome dysbiosis similar in people with T2DM and DR. Gut mycobiomes were generated from healthy controls (HC), people with T2DM and people with DR through Illumina sequencing of ITS2 region. Data were analysed using QIIME and R software. Dysbiotic changes were observed in people with T2DM and DR compared to HC at the phyla and genera level. Mycobiomes of HC, T2DM and DR could be discriminated by heat map analysis, Beta diversity analysis and LEfSE analysis. Spearman correlation of fungal genera indicated more negative correlation in HC compared to T2DM and DR mycobiomes. This study demonstrates dysbiosis in the gut mycobiomes in people with T2DM and DR compared to HC. These differences were significant both at the phyla and genera level between people with T2DM and DR as well. Such studies on mycobiomes may provide new insights and directions to identification of specific fungi associated with T2DM and DR and help developing novel therapies for Diabetes Mellitus and DR.
PURPOSE. To enumerate the ocular surface fungal microbiome of healthy human eyes by using next-generation sequencing (NGS). METHODS.Tarsal and fornix conjunctiva from the lower and upper lids of both eyes of healthy individuals were swabbed in duplicate separately. A total of 34 samples were collected from both the eyes of 17 individuals, which were used for the generation of ocular surface fungal microbiomes by NGS. Twenty-four swabs were used for the detection of culturable fungi by the conventional cultivable method. Microbiome generation involved DNA extraction, internal transcribed spacer 2 (ITS2) amplification, library preparation, amplicon sequencing, taxonomic assignment of sequences, diversity analyses, and identification of genera. RESULTS.The cultivable method detected fungi in 3 out of 24 (12.5 %) ocular surface swabs, whereas NGS identified fungi in 25 of the 34 (73.5 %) swabs. In the cultivable method Aspergillus was the only genus detected, whereas NGS detected 65 distinct genera with 12 to 24 genera per microbiome. Genera Aspergillus, Setosphaeria, Malassezia, and Haematonectria were present in the 25 eyes in which fungi were detected. Alpha diversity in the two eyes was similar and sex had no effect, but Chao1 and Simpson indices were altered by age.CONCLUSIONS. This study explored the ocular surface fungal microbiome of healthy individuals using NGS and identified a greater degree of diversity of fungi than with the conventional cultivable method. It was observed that several fungal genera were associated with the healthy conjunctiva.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.