Aims/hypothesisThe EFFECT-II study aimed to investigate the effects of dapagliflozin and omega-3 (n-3) carboxylic acids (OM-3CA), individually or combined, on liver fat content in individuals with type 2 diabetes and non-alcoholic fatty liver disease (NAFLD).MethodsThis randomised placebo-controlled double-blind parallel-group study was performed at five clinical research centres at university hospitals in Sweden. 84 participants with type 2 diabetes and NAFLD were randomly assigned 1:1:1:1 to four treatments by a centralised randomisation system, and all participants as well as investigators and staff involved in the study conduct and analyses were blinded to treatments. Each group received oral doses of one of the following: 10 mg dapagliflozin (n = 21), 4 g OM-3CA (n = 20), a combination of both (n = 22) or placebo (n = 21). The primary endpoint was liver fat content assessed by MRI (proton density fat fraction [PDFF]) and, in addition, total liver volume and markers of glucose and lipid metabolism as well as of hepatocyte injury and oxidative stress were assessed at baseline and after 12 weeks of treatment (completion of the trial).ResultsParticipants had a mean age of 65.5 years (SD 5.9), BMI 31.2 kg/m2 (3.5) and liver PDFF 18% (9.3). All active treatments significantly reduced liver PDFF from baseline, relative changes: OM-3CA, −15%; dapagliflozin, −13%; OM-3CA + dapagliflozin, −21%. Only the combination treatment reduced liver PDFF (p = 0.046) and total liver fat volume (relative change, −24%, p = 0.037) in comparison with placebo. There was an interaction between the PNPLA3 I148M polymorphism and change in liver PDFF in the active treatment groups (p = 0.03). Dapagliflozin monotherapy, but not the combination with OM-3CA, reduced the levels of hepatocyte injury biomarkers, including alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transferase (γ-GT), cytokeratin (CK) 18-M30 and CK 18-M65 and plasma fibroblast growth factor 21 (FGF21). Changes in γ-GT correlated with changes in liver PDFF (ρ = 0.53, p = 0.02). Dapagliflozin alone and in combination with OM-3CA improved glucose control and reduced body weight and abdominal fat volumes. Fatty acid oxidative stress biomarkers were not affected by treatments. There were no new or unexpected adverse events compared with previous studies with these treatments.Conclusions/interpretationCombined treatment with dapagliflozin and OM-3CA significantly reduced liver fat content. Dapagliflozin monotherapy reduced all measured hepatocyte injury biomarkers and FGF21, suggesting a disease-modifying effect in NAFLD.Trial registration:ClinicalTrials.gov NCT02279407Funding:The study was funded by AstraZeneca.Electronic supplementary materialThe online version of this article (10.1007/s00125-018-4675-2) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
This article is available online at http://www.jlr.org implicated in several diverse diseases, such as type 2 diabetes, Alzheimer disease, ( 2 ) and cancer ( 3 ). Lipid analysis has been an important area of research for several decades, and due to technological advances, the fi eld has experienced a renaissance in the last decade. In a modern laboratory, a comprehensive lipid characterization can be performed that generates quantitative data of several hundreds of molecular lipids from several different lipid classes. This kind of analysis, often called lipidomics, is based on HPLC and mass spectrometry (MS) instrumentation. The analysis is performed unattended in the 96-well format and is fully automated.An important component for successful analysis is the quality of the lipid extract. It is important that the lipid extract that is injected on the HPLC or infused into the mass spectrometer is pure; therefore, it is important that interfering substances and particles are removed. Inability in removing these substances might result in a high chemical background, which will have an effect on both the sensitivity and selectivity of the analysis. In contrast to fully automated and high-throughput analysis, lipid extraction is still often performed manually, involving exhaustive and time-consuming pipetting steps and hazardous solvents such as chloroform. Thus, a fully automated, chloroformfree method that can be used with standard 96-well robots would signifi cantly improve sample throughput, as well as reduce the negative impact on health and environment. The aim of this study was to develop that method.Abstract Lipid extraction from biological samples is a critical and often tedious preanalytical step in lipid research. Primarily on the basis of automation criteria, we have developed the BUME method, a novel chloroform-free total lipid extraction method for blood plasma compatible with standard 96-well robots. In only 60 min, 96 samples can be automatically extracted with lipid profi les of commonly analyzed lipid classes almost identically and with absolute recoveries similar or better to what is obtained using the chloroformbased reference method. Lipid recoveries were linear from 10-100 µl plasma for all investigated lipids using the developed extraction protocol. The BUME protocol includes an initial one-phase extraction of plasma into 300 µl butanol:methanol (BUME) mixture (3:1) followed by twophase extraction into 300 µl heptane:ethyl acetate (3:1) using 300 µl 1% acetic acid as buffer. The lipids investigated included the most abundant plasma lipid classes (e.g., cholesterol ester, free cholesterol, triacylglycerol, phosphatidylcholine, and sphingomyelin) as well as less abundant but biologically important lipid classes, including ceramide, diacylglycerol, and lyso-phospholipids. This novel method has been successfully implemented in our laboratory and is now used daily. We conclude that the fully automated, highthroughput BUME method can replace chloroform-based methods, saving both human and environment...
In this study we present a simple and rapid method for tissue lipid extraction. Snap-frozen tissue (15–150 mg) is collected in 2 ml homogenization tubes. 500 μl BUME mixture (butanol:methanol [3:1]) is added and automated homogenization of up to 24 frozen samples at a time in less than 60 seconds is performed, followed by a 5-minute single-phase extraction. After the addition of 500 μl heptane:ethyl acetate (3:1) and 500 μl 1% acetic acid a 5-minute two-phase extraction is performed. Lipids are recovered from the upper phase by automated liquid handling using a standard 96-tip robot. A second two-phase extraction is performed using 500 μl heptane:ethyl acetate (3:1). Validation of the method showed that the extraction recoveries for the investigated lipids, which included sterols, glycerolipids, glycerophospholipids and sphingolipids were similar or better than for the Folch method. We also applied the method for lipid extraction of liver and heart and compared the lipid species profiles with profiles generated after Folch and MTBE extraction. We conclude that the BUME method is superior to the Folch method in terms of simplicity, through-put, automation, solvent consumption, economy, health and environment yet delivering lipid recoveries fully comparable to or better than the Folch method.
Aims/Hypothesis To determine if acute overexpression of peroxisome proliferator-activated receptor, gamma, coactivator 1 beta (Pgc-1β [also known as Ppargc1b]) in skeletal muscle improves insulin action in a rodent model of dietinduced insulin resistance. Methods Rats were fed either a low-fat or high-fat diet (HFD) for 4 weeks. In vivo electroporation was used to overexpress Pgc-1β in the tibialis cranialis (TC) and extensor digitorum longus (EDL) muscles. Downstream effects of Pgc-1β on markers of mitochondrial oxidative capacity, oxidative stress and muscle lipid levels were characterised. Insulin action was examined ex vivo using intact muscle strips and in vivo via a hyperinsulinaemic-euglycaemic clamp. Results Pgc-1β gene expression was increased >100% over basal levels. The levels of proteins involved in mitochondrial function, lipid metabolism and antioxidant defences, the activity of oxidative enzymes, and substrate oxidative capacity were all increased in muscles overexpressing Pgc-1β. In rats fed a HFD, increasing the levels of Pgc-1β partially ameliorated muscle insulin resistance, in association with decreased levels of long-chain acyl-CoAs (LCACoAs) and increased antioxidant defences. Conclusions Our data show that an increase in Pgc-1β expression in vivo activates a coordinated subset of genes that increase mitochondrial substrate oxidation, defend against oxidative stress and improve lipid-induced insulin resistance in skeletal muscle.
We evaluated safety, tolerability, pharmacokinetics, and pharmacodynamics of AZD5718, a novel 5‐lipooxygenase activating protein (FLAP) inhibitor, in a randomized, single‐blind, placebo‐controlled, first‐in‐human (FIH) study consisting of single and multiple ascending dosing (SAD and MAD) for 10 days in healthy subjects. Target engagement was measured by ex vivo calcium ionophore stimulated leukotriene B (LTB4) production in whole blood and endogenous leukotriene E (LTE4) in urine. No clinically relevant safety and tolerability findings were observed. The AZD5718 was rapidly absorbed and plasma concentrations declined biphasically with a mean terminal half‐life of 10–12 h. Steady‐state levels were achieved after ∼3 days. After both SADs and MADs, a dose/concentration‐effect relationship between both LTB4 and LTE4 vs. AZD5718 exposure was observed with concentration of half inhibition (IC50) values in the lower nM range. Based on obtained result, AZD5718 is considered as a suitable drug candidate for future evaluation in patients with coronary artery disease (CAD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.