Percutaneous endoscopic lumbar discectomy (PELD) for migrated disc herniations is technically demanding due to the absence of the technical guideline. The purposes of this study were to propose a radiologic classification of disc migration and surgical approaches of PELD according to the classification. A prospective study of 116 consecutive patients undergoing single-level PELD was conducted. According to preoperative MRI findings, disc migration was classified into four zones based on the direction and distance from the disc space: zone 1 (far up), zone 2 (near up), zone 3 (near down), zone 4 (far down). Two surgical approaches were used according to this classification. Near-migrated discs were treated with "half-and-half" technique, which involved positioning a beveled working sheath across the disc space to the epidural space. Far-migrated discs were treated with "epiduroscopic" technique, which involved introducing the endoscope into the epidural space completely. The mean follow-up period was 14.5 (range 9-20) months. According to the Macnab criteria, satisfactory results were as follows: 91.6% (98/107) in the down-migrated discs; 88.9% (8/9) in the up-migrated discs; 97.4% (76/78) in the near-migrated discs; and 78.9% (30/38) in the far-migrated discs. The mean VAS score decreased from 7.5 +/- 1.7 preoperatively to 2.6 +/- 1.8 at the final follow-up (P < 0.0001). There were no recurrence and no approach-related complications during the follow-up period. The proposed classification and approaches will provide appropriate surgical guideline of PELD for migrated disc herniation. Based on our results, open surgery should be considered for far-migrated disc herniations.
Percutaneous endoscopic interlaminar discectomy is a safe, effective, and minimally invasive procedure for the treatment of intracanalicular disc herniations at the L5-S1 level in properly selected cases, especially when the transforaminal approach is not possible because of anatomic constraints.
Foraminoplastic-PELD is safe and effective procedure for surgical treatment of soft migrated herniations. The results are comparable to results of open discectomy.
NF-κB is a key transcription factor that dictates the outcome of diverse immune responses. How NF-κB is regulated by multiple activating receptors that are engaged during natural killer (NK)-target cell contact remains undefined. Here we show that sole engagement of NKG2D, 2B4 or DNAM-1 is insufficient for NF-κB activation. Rather, cooperation between these receptors is required at the level of Vav1 for synergistic NF-κB activation. Vav1-dependent synergistic signalling requires a separate PI3K-Akt signal, primarily mediated by NKG2D or DNAM-1, for optimal p65 phosphorylation and NF-κB activation. Vav1 controls downstream p65 phosphorylation and NF-κB activation. Synergistic signalling is defective in X-linked lymphoproliferative disease (XLP1) NK cells entailing 2B4 dysfunction and required for p65 phosphorylation by PI3K-Akt signal, suggesting stepwise signalling checkpoint for NF-κB activation. Thus, our study provides a framework explaining how signals from different activating receptors are coordinated to determine specificity and magnitude of NF-κB activation and NK cell responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.