Although massively parallel sequencing approaches have been widely used to study genomic variation, simple alignment of short reads to a reference genome cannot be used to investigate the full range of structural variation and phased diploid architecture, which are important for precision medicine. By contrast, the single-molecule real-time (SMRT) sequencing platform produces long reads that can resolve repetitive structures effectively. We integrated this technology with several other sequencing approaches to construct a high-quality
BACKGROUND AND PURPOSE The transcriptional co-activator with PDZ-binding motif (TAZ) is a key controller of mesenchymal stem cell differentiation through its nuclear localization and subsequent interaction with master transcription factors. In particular, TAZ directly associates with myoblast determining protein D (MyoD) and activates MyoD-induced myogenic gene expression, thereby enhancing myogenic differentiation. Here, we have synthesized and characterized low MW compounds modulating myogenic differentiation via induction of TAZ nuclear localization. EXPERIMENTAL APPROACH COS7 cells stably transfected with GFP-TAZ were used in a high content imaging screen for compounds specifically enhancing nuclear localization of TAZ. We then studied the effects of such TAZ modulators on myocyte differentiation of C2C12 cells and myogenic transdifferentiation of mouse embryonic fibroblast cells in vitro and muscle regeneration in vivo. KEY RESULTS We identified two TAZ modulators, TM-53, and its structural isomer, TM-54. Each compound strongly enhanced nuclear localization of TAZ by reducing S89-phosphorylation and dose-dependently augmented myogenic differentiation and MyoD-mediated myogenic transdifferentiation through an activation of MyoD-TAZ interaction. The myogenic stimulatory effects of TM-53 and TM-54 were impaired in the absence of TAZ, but retrieved by the restoration of TAZ. In addition, administration of TM-53 and TM-54 enhanced injury-induced muscle regeneration in vivo and attenuated myofiber injury in vitro. CONCLUSIONS AND IMPLICATIONS The novel TAZ modulators TM-53 and TM-54 accelerated myogenic differentiation and improved muscle regeneration and function after injury, demonstrating that low MW compounds targeting the nuclear localization of TAZ have beneficial effects in skeletal muscle regeneration and in recovery from muscle degenerative diseases. Abbreviations DEX, dexamethasone; KO, knockout; KRICT, Korea Research Institute of Chemical Technology; MAFbx, muscle atrophy F-box; MCK, muscle creatine kinase; MEF, mouse embryonic fibroblast; MRF, muscle regulatory factor; MuRF1, muscle-specific RING finger protein 1; MYF5, myogenic determination factor 5; MyHC, myosin heavy chain; MyoD, myoblast determining protein D; Myog, myogenine; RFP-H2B, red fluorescence protein-tagged histone 2B; TAZ, transcriptional co-activator with PDZ-binding motif; TM, TAZ modulator; WT, wild type BJP British Journal of Pharmacology
Rhizomes of Curcuma phaeocaulis Valeton (Zingiberaceae) have traditionally been used for controlling inflammatory conditions. Numerous studies have aimed to isolate and characterize the bioactive constituents of C. phaeocaulis. It has been reported that its anti-inflammatory properties are a result of cyclooxygenase-2 inhibition; however, its effect on the T-cell function remains to be elucidated. In this study, four known sesquiterpenoids, viz., ar-turmerone (TM), germacrone (GM), (+)-(4S,5S)-germacrone-4,5-epoxide (GE), and curzerenone (CZ), were isolated from C. phaeocaulis rhizomes and evaluated for their effects on the CD4(+) T-cell function. While GM, GE, and CZ had no effect on the activation of splenic T cells or CD4(+) T cells, TM suppressed the interferon (IFN)-γ production, without affecting the interleukin (IL)-4 expression. TM also decreased the expression of IL-2 in CD4(+) T cells, but did not change their cell-division rates upon stimulation. These results suggest that TM, a major constituent of C. phaeocaulis rhizomes selectively exerts potent anti-inflammatory effects via suppression of the inflammatory cytokines IFN-γ and IL-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.