Aluminum and its alloys are some of the most widely used materials for the brazing of parts in aerospace and automotive industries due to their excellent physical characteristics, e.g., good ductility, high strength-to-weight ratio, light weight, good corrosion and oxidation resistance, satisfactory malleability and formability, and excellent thermal and electrical conductivity. Especially during casting operations, high strength and machinability of Al-based alloys are of utmost concern. The quality and strength of casting products are affected by porosity generated due to the dissolution of gases and the effects of modifiers. Thus, unstable properties of Al alloys arising due to such influences should to be controlled by reinforcing suitable elements. Compared to other materials, brazing on Al requires higher control precision as the difference between the melting points of the base metal and the filler remain low even after the addition of melting point suppressants, such as Si. This necessitates the development of novel low-temperature Al-based filler metals. Moreover, the mechanical properties of Al-based alloys can be enhanced by introducing nanoparticles within them to reduce the thickness of Si-needles and IMCs (intermetallic compound) within the Al matrix, thereby refining the nanostructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.