Olfactory systems sense and respond to various odorants. Olfactory receptors, which in most organisms are G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors, directly bind volatile or soluble odorants. Compared to the genomes of mammals, the genome of the nematode Caenorhabditis elegans contains more putative olfactory receptor genes, suggesting that in nematodes there may be combinatorial complexity to the receptor-odor relationship. We used RNA interference (RNAi) screening to identify nematode olfactory receptors necessary for the response to specific odorants. This screening identified 194 candidate olfactory receptor genes linked to 11 odorants. Additionally, we identified SRI-14 as being involved in sensing high concentrations of diacetyl. Rescue and neuron-specific RNAi experiments demonstrated that SRI-14 functioned in ASH neurons, specific chemosensory neurons, resulting in avoidance responses. Calcium imaging revealed that ASH neurons responded to high diacetyl concentrations only, whereas another class of chemosensory neurons, AWA neurons, reacted to both low and high concentrations. Loss of SRI-14 function hampered ASH responses to high diacetyl concentrations, whereas loss of ODR-10 function reduced AWA responses to low odorant concentrations. Chemosensory neurons ectopically expressing SRI-14 responded to a high concentration of diacetyl. Thus, nematodes have concentration-dependent odor-sensing mechanisms that are segregated at the olfactory receptor and sensory neuron levels.
Responses to environmental stimuli are mediated by the activation and inactivation of various signalling proteins. However, the temporal dynamics of these events in living animals are not well understood. Here we show real-time imaging of the activity of the key regulator of the MAP kinase pathway, Ras, in living Caenorhabditis elegans and that Ras is transiently activated within a few seconds in olfactory neurons in response to increase in the concentration of odorants. This fast activation of Ras is dependent on the olfactory signalling pathway and Ras guanyl nucleotide-releasing protein (RasGRP). A negative feedback loop then quickly leads to Ras inactivation despite the continued presence of the odorant. Phenotypes of Ras mutants suggest this rapid activation and inactivation of Ras is important for regulation of interneuron activities and olfactory behaviours. Our results reveal novel kinetics and biological implication of transient activation of Ras in olfactory systems.
Signal transduction pathways play essential roles to adapt environmental changes and composed of various signaling proteins. Therefore, observation of activity of a specific protein in vivo is important for understanding the signal transduction pathways. However temporal dynamics of signaling proteins in living animals are not well known. Here we tried to monitor the activities of Ras protein which is one of the key regulators for the Ras-MAPK signal transduction pathway. It was previously reported that the Ras-MAPK pathway functions in olfactory neurons in Caenorhabditis elegans. Thus, we observed Ras activity in olfactory neuron in living animals using Raichu-Ras, a FRET-based sensor for Ras activity. We succeeded in detecting quick changes of Ras activity in response to odor stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.