Sphingosine kinase 1 (SPHK1), an oncogenic kinase, has previously been found to be upregulated in various types of human malignancy and to play a crucial role in tumor development and progression. Although SPHK1 has gained increasing prominence as an important enzyme in cancer biology, its potential as a predictive biomarker and a therapeutic target in cervical cancer remains unknown. SPHK1 expression was examined in 287 formalin-fixed, paraffin-embedded cervical cancer tissues using immunohistochemistry, and its clinical implications and prognostic significance were analyzed. Cervical cancer cell lines including HeLa and SiHa were treated with the SPHK inhibitors SKI-II or FTY720, and effects on cell survival, apoptosis, angiogenesis, and invasion were examined. Moreover, the effects of FTY720 on tumor growth were evaluated using a patient-derived xenograft (PDX) model of cervical cancer. Immunohistochemical analysis revealed that expression of SPHK1 was significantly increased in cervical cancer compared with normal tissues. SPHK1 expression was significantly associated with tumor size, invasion depth, FIGO stage, lymph node metastasis, and lymphovascular invasion. Patients with high SPHK1 expression had lower overall survival and recurrence-free survival rates than those with low expression. Treatment with SPHK inhibitors significantly reduced viability and increased apoptosis in cervical cancer cells. Furthermore, FTY720 significantly decreased in vivo tumor weight in the PDX model of cervical cancer. We provide the first convincing evidence that SPHK1 is involved in tumor development and progression of cervical cancer. Our data suggest that SPHK1 might be a potential prognostic marker and therapeutic target for the treatment of cervical cancer.Oncotarget 26747 www.impactjournals.com/oncotarget
Sphingosine kinase 1 (SK1) is over-expressed in multiple types of human cancer. SK1 has growth-promoting effects and has been proposed as a potential therapeutic target. We investigated the therapeutic effects of SK1 inhibition in epithelial ovarian carcinoma (EOC). SK1 siRNA or inhibitors were tested in EOC cell lines, including A2780, SKOV3ip1, A2780-CP20, SKOV3-TR, ES2 and RMG2. Cells were treated with SK inhibitor or FTY720, and cell proliferation, apoptosis, angiogenesis and invasion were examined by MTT, FACS, ELISA and wound-healing assays, respectively. In vivo experiments were performed to test the effects of FTY720 on tumor growth in orthotopic mouse xenografts of EOC cell lines A2780 or SKOV3ip1 and a patient-derived xenograft (PDX) model of clear cell ovarian carcinoma (CCC). Blocking SK1 with siRNA or inhibitors significantly reduced proliferation, angiogenesis and invasion, and increased apoptosis in chemosensitive (A2780 and SKOV3ip1) and chemoresistant (A2780-CP20, SKOV3-TR, ES2 and RMG2) EOC cells. SK1 inhibitors also decreased the intracellular enzymatic activity of SK1. Furthermore, FTY720 treatment significantly decreased the in vivo tumor weight in xenograft models of established cell lines (A2780 and SKOV3ip1) and a PDX model for CCC compared to control (p < 0.05). These results support therapeutic targeting of SK1 as a potential new strategy for EOC.
A better understanding of tumor biology is important in the identification of molecules that are down-regulated in malignancy and in determining their role in tumor suppression. The aim of this study was to analyze osteoprotegerin (OPG) expression in colorectal carcinoma (CRC) and to investigate the underlying mechanism for changes in the expression of OPG. OPG expression was assessed in CRC tissue samples and cell lines. The methylation status of the OPG promoter region was determined, and the effects of demethylation on OPG expression were analyzed. The effects of recombinant OPG (rOPG) administration on cellular functions were also investigated. Clinical and prognostic implications of OPG protein expression in CRC patients were analyzed. The CRC tissues and cells showed significantly lower OPG expression. Pyrosequencing of OPG-silenced CRC cells revealed that the OPG gene promoter was highly methylated. Treatment with demethylating agent significantly elevated OPG mRNA and protein expression. rOPG significantly decreased cell viability and MMP-2 and VEGF-A production in CRC cells. Reduced OPG immunoreactivity was associated with aggressive oncogenic behavior in CRC. Also, OPG expression was found to be an independent predictor of recurrent hepatic metastasis and independent prognostic factor for worse survival rates. We demonstrated that OPG silencing in CRC occurs through epigenetic repression, and is involved in the development and progression of CRC. Our data suggest that OPG is a novel prognostic biomarker and a new therapeutic target for the treatment of patients with CRC.
This study was designed to investigate whether proton pump inhibitors (PPI, V-ATPase blocker) could increase the effect of cytotoxic agents in chemoresistant epithelial ovarian cancer (EOC). Expression of V-ATPase protein was evaluated in patients with EOC using immunohistochemistry, and patient survival was compared based on expression of V-ATPase mRNA from a TCGA data set. In vitro, EOC cell lines were treated with chemotherapeutic agents with or without V-ATPase siRNA or PPI (omeprazole) pretreatment. Cell survival and apoptosis was assessed using MTT assay and ELISA, respectively. In vivo experiments were performed to confirm the synergistic effect with omeprazole and paclitaxel on tumor growth in orthotopic and patient-derived xenograft (PDX) mouse models. Expression of V-ATPase protein in ovarian cancer tissues was observed in 44 patients (44/59, 74.6%). Higher expression of V-ATPase mRNA was associated with poorer overall survival in TCGA data. Inhibition of V-ATPase by siRNA or omeprazole significantly increased cytotoxicity or apoptosis to paclitaxel in chemoresistant (HeyA8-MDR, SKOV3-TR) and clear cell carcinoma cells (ES-2, RMG-1), but not in chemosensitive cells (HeyA8, SKOV3ip1). Moreover, the combination of omeprazole and paclitaxel significantly decreased the total tumor weight compared with paclitaxel alone in a chemoresistant EOC animal model and a PDX model of clear cell carcinoma. However, this finding was not observed in chemosensitive EOC animal models. These results show that omeprazole pretreatment can increase the effect of chemotherapeutic agents in chemoresistant EOC and clear cell carcinoma via reduction of the acidic tumor microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.