With electrical power generated from mechanical contact, triboelectric nanogenerators (TENGs) offer a promising route to realizing self-powered sensors. For effective usage, it is important to improve their limited power range (0.1-100 mW/cm 2 ) and this can be achieved by optimizing the output performance. Among the factors that confer higher performance are materials with a strong triboelectric effect together with low permittivity, but it is challenging to optimize both within a single material. This paper presents a solution to this challenge by optimizing a low permittivity substrate beneath the tribo-contact layer. Results are simulated over a range of substrate permittivities. The open circuit voltage is found to increase by a factor of 1.6 in moving from PVDF to the lower permittivity PTFE. Two TENG devices have been fabricated with 100 PET and PTFE substrates to compare performance. The experiments confirm that lowering the substrate dielectric constant (i.e. PET to PTFE) raises the open circuit voltage in line with simulation predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.