Abstract. The discretisation of the Oseen problem by finite element methods may suffer in general from two shortcomings. First, the discrete inf-sup (Babuška-Brezzi) condition can be violated. Second, spurious oscillations occur due to the dominating convection. One way to overcome both difficulties is the use of local projection techniques. Studying the local projection method in an abstract setting, we show that the fulfilment of a local inf-sup condition between approximation and projection spaces allows to construct an interpolation with additional orthogonality properties. Based on this special interpolation, optimal a-priori error estimates are shown with error constants independent of the Reynolds number. Applying the general theory, we extend the results of Braack and Burman for the standard two-level version of the local projection stabilisation to discretisations of arbitrary order on simplices, quadrilaterals, and hexahedra. Moreover, our general theory allows to derive a novel class of local projection stabilisation by enrichment of the approximation spaces. This class of stabilised schemes uses approximation and projection spaces defined on the same mesh and leads to much more compact stencils than in the two-level approach. Finally, on simplices, the spectral equivalence of the stabilising terms of the local projection method and the subgrid modelling introduced by Guermond is shown. This clarifies the relation of the local projection stabilisation to the variational multiscale approach.Mathematics Subject Classification. 65N12, 65N30, 76D05.
The normal field instability in magnetic liquids is investigated experimentally by means of a radioscopic technique which allows a precise measurement of the surface topography. The dependence of the topography on the magnetic field is compared to results obtained by numerical simulations via the finite-element method. Quantitative agreement has been found for the critical field of the instability, the scaling of the pattern amplitude and the detailed shape of the magnetic spikes. The fundamental Fourier mode approximates the shape to within 10% accuracy for a range of up to 40% of the bifurcation parameter of this subcritical bifurcation. The measured control parameter dependence of the wavenumber differs qualitatively from analytical predictions obtained by minimization of the free energy.
SUMMARYWe present a numerical study of several finite element discretizations applied to a benchmark problem for the two-dimensional steady state incompressible Navier-Stokes equations defined in Schäfer and Turek (The benchmark problem 'Flow around a cylinder'. In Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics, vol. 52, Hirschel EH (ed.). Vieweg: Wiesbaden, 1996; 547-566). The discretizations are compared with respect to the accuracy of the computed benchmark parameters. Higher-order isoparametric finite element discretizations turned out to be by far the most accurate. The discrete systems obtained with higher-order discretizations are solved with a modified coupled multigrid method whose behaviour within the benchmark problem is also studied numerically.
Standard mixed finite element methods for the incompressible Navier-Stokes equations that relax the divergence constraint are not robust against large irrotational forces in the momentum balance and the velocity error depends on the continuous pressure. This robustness issue can be completely cured by using divergence-free mixed finite elements which deliver pressure-independent velocity error estimates. However, the construction of H 1 -conforming, divergence-free mixed finite element methods is rather difficult. Instead, we present a novel approach for the construction of arbitrary order mixed finite element methods which deliver pressure-independent velocity errors. The approach does not change the trial functions but replaces discretely divergence-free test functions in some operators of the weak formulation by divergence-free ones. This modification is applied to inf-sup stable conforming and nonconforming mixed finite element methods of arbitrary order in two and three dimensions. Optimal estimates for the incompressible Stokes equations are proved for the H 1 and L 2 errors of the velocity and the L 2 error of the pressure. Moreover, both velocity errors are pressure-independent, demonstrating the improved robustness. Several numerical examples illustrate the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.