Dual roles of calsequestrin (CSQ-1) being the Ca2+ donor and Ca2+ acceptor make it an excellent Ca2+-buffering protein within the sarcoplasmic reticulum (SR). We have isolated and characterized a calsequestrin (csq-1)-null mutant in Caenorhabditis elegans. To our surprise, this mutant csq-1(jh109) showed no gross defects in muscle development or function but, however, is highly sensitive to perturbation of Ca2+ homeostasis. By taking advantage of the viable null mutant, we investigated the domains of CSQ-1 that are important for polymerization and cellular localization, and required for its correct buffering functions. In transgenic animals rescued with various CSQ-1 constructs, the in vivo patterns of polymerization and localization of several mutated calsequestrins were observed to correlate with the structure-function relationship. Our results suggest that polymerization of CSQ-1 is essential but not sufficient for correct cellular localization and function of CSQ-1. In addition, direct interaction between CSQ-1 and the ryanodine receptor (RyR) was found for the first time, suggesting that the cellular localization of CSQ-1 in C. elegans is indeed modulated by RyR through a physical interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.