The tourism sector is one of the country's biggest foreign exchange earners. Foreign tourist visits to Indonesia reached 16.1 million during 2019. Therefore foreign tourist visits become a very important thing. In this study clustering will be carried out or grouping data on foreign tourist visits into 5 groups for the category of countries with very high, high, high enough, low and very low visits. Data processing was performed using the K-Means clustering method and the Principle Component Analysis (PCA) dimension reduction method. From the data processing, K-Means modeling results combined with the PCA method resulted in a smaller or better Davies Bouldin Index (DBI) evaluation value of 0.310 compared to K-Means modeling alone which obtained a DBI value of 0.382. The tools used in data processing are RapidMiner. The results of clustering are expected to be a reference for related parties to maximize the promotion of overseas tourism.
Seiring dengan perkembangan teknologi informasi yang semakin modern saat ini, mendorong para pelaku bisnis (pengusaha) untuk berlomba-lomba dalam memasarkan produk-produk mereka menggunakan fasilitas internet seperti website. Anita Kurnia Boutique adalah perusahaan yang bergerak di bidang jasa yang menjual pakaian wanita dengan kualitas premium dan reguler. Pakaian yang dijual oleh Anita Kurnia Boutique lebih mementingkan kualitas bahan pakaian. Untuk mengatasi masalah tersebut maka dibuatlah website Anita Kurnia Boutique sebagai media informasi bagi pelanggan. Dengan adanya website ini dapat memudahkan Anita Kurnia Boutique dalam memberikan informasi kepada user dan diharapkan dapat meningkatkan omset penjualan Anita Kurnia Boutique. Rancangan pembuatan website Anita Kurnia Boutique menggunakan software Adobe Dreamweaver CS6, Xampp, dan Adobe Photoshop CS3. Sedangkan dalam pengujian unit menggunakan Black Box Testing. Dengan website e-commerce ini, dapat membantu pelanggan dan masyarakat untuk mendapatkan informasi tentang Anita Kurnia Boutique, area pemasaran yang dapat menjangkau hingga ke daerah lain, dan juga dapat melakukan belanja online.
Pendidikan anak usia dini memiliki prinsip dalam pembelajaran yaitu bermain sambil belajar sehingga penilaian yang dilakukan harus memiliki kekhususan tersendiri, berbeda dengan penilaian untuk sekolah dasar dan menengah, yang perlu dilaksanakan secara cermat dan hati-hati. Proses penilaian merupakan bagian yang tak terpisahkan dari proses pembelajaran dan bersifat menyeluruh (holistik) yang mencakup semua aspek perkembangan anak didik baik aspek sikap, ilmu pengetahuan maupun keterampilan. Teknologi perlu dimanfaatkan untuk memaksimalkan proses penilaian perkembangan anak pada pendidikan anak usia dini ABIMANYU pada saat ini. Model proses pengembangan Aplikasi yang digunakan adalah metode waterfall mulai dari analisa kebutuhan, kemudian dilanjutkan dengan design sistem dan software, pembuatan kode program dan pengujian. Penelitian ini menghasilkan Aplikasi penilaian perkembangan anak menggunakan teknologi berbasis android yang mampu menunjang proses penilaian perkembangan anak oleh guru PAUD secara optimal dan juga mampu menghasilkan laporan yang cepat dan benar.Kata Kunci: Penilaian Perkembangan, Aplikasi Android, Anak Usia Dini
Malnutrition in Indonesia is still relatively high, it is recorded that there are 19.6% of children under five years old who suffer from malnutrition throughout Indonesia. Malnutrition will give impacts tochildren's health in the future. Therefore, the action to detect the malnutrition occurrence should be conducted as early as possible; thus, the patient will immediately getthe right health care. Many methods have already implemented to determine whether a toddler suffers from malnutrition or not. One of them is by using data mining techniques to create a grouping. Toddlers will be categorized into 4 groups namely Good Nutrition, Lack of Nutrition, Over Nutrition and Malnutrition. The data used are Toddler data, which is consisted of 4 predictor attributes and 1 result attribute. In the previous research the algorithm used was C 4.5 that was compared toBack-propagation. The result of the data processing by using C 4.5 algorithm is 88.24% and Kappa with the amount of 0.725. In order to improve the accuracy of the C 4.5 algorithm, the algorithm of Particle Swarm Optimization is implementedfor the optimization. Having implemented Particle Swarm Optimization, the accuracy is obtained in the amount of 98.04% and Kappa 0.954. Accordingly, the Particle Swarm Optimization increases the accuracy of C 4.5 by 9.80%. The feature selection, which is conducted, indicates that the attribute of family status must be omitted to obtain higher amount of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.