The temperature dependence of the pressure-induced equilibrium unfolding of staphylococcal nuclease (Snase) was determined by fluorescence of the single tryptophan residue, FTIR absorption for the amide I' and tyrosine O-H bands, and small-angle X-ray scattering (SAXS). The results from these three techniques were similar, although the stability as measured by fluorescence was slightly lower than that measured by FTIR and SAXS. The resulting phase diagram exhibits the well-known curvature for heat and cold denaturation of proteins, due to the large decrease in heat capacity upon folding. The volume change for unfolding became less negative with increasing temperatures, consistent with a larger thermal expansivity for the unfolded state than for the folded state. Fluorescence-detected pressure-jump kinetics measurements revealed that the curvature in the phase diagram is due primarily to the rate constant for folding, indicating a loss in heat capacity for the transition state relative to the unfolded state. The similar temperature dependence of the equilibrium and activation volume changes for folding indicates that the thermal expansivities of the folded and transition states are similar. This, along with the fact that the activation volume for folding is positive over the temperature range examined, the nonlinear dependence of the folding rate constant upon temperature implicates significant dehydration in the rate-limiting step for folding of Snase.
We examined the temperature- and pressure-induced unfolding and aggregation of beta-lactoglobulin (beta-Lg) and its genetic variants A and B up to temperatures of 90 degrees C in the pressure range from 1 bar to 10 kbar. To achieve information simultaneously on the secondary, tertiary, and quaternary structures, we have applied Synchrotron small-angle X-ray diffraction and Fourier transform infrared spectroscopy. Upon heating a beta-Lg solution at pH 7.0, the radius of gyration Rg first decreases, indicating a partial dissociation of the dimer into the monomers, the secondary structures remaining essentially unchanged. Above 50 degrees C, the infrared spectroscopy data reveal a decrease in intramolecular beta-sheet and alpha-helical structures, whereas the contribution of disordered structures increases. Within the temperature range from 50 to 60 degrees C, the appearance of the pair distance distribution function is not altered significantly, whereas the amount of defined secondary structures declines approximately by 10%. Above 60 degrees C the aggregation process of 1% beta-Lg solutions is clearly detectable by the increase in Rg and intermolecular beta-sheet content. The irreversible aggregation is due to intermolecular S-H/S-S interchange reactions and hydrophobic interactions. Upon pressurization at room temperature, the equilibrium between monomers and dimers is also shifted and dissociation of dimers is induced. At pressures of approximately 1300 bar, the amount of beta-sheet and alpha-helical structures decreases and the content of disordered structures increases, indicating the beginning unfolding of the protein which enables aggregation. Contrary to the thermal denaturation process, intermolecular beta-sheet formation is of less importance in pressure-induced protein aggregation and gelation. The spatial extent of the resulting protein clusters is time- and concentration-dependent. The aggregation of a 1% (w/w) solution of A, B, and the mixture AB results in the formation of at least octameric units as can be deduced from the radius of gyration of about 36 A. No differences in the pressure stability of the different genetic variants of beta-Lg are detectable in our FT-IR and SAXS experiments. Even application of higher pressures (up to 10 kbar) does not result in complete unfolding of all beta-Lg variants.
In this paper, we illustrate the use of high-pressure Fourier transform infrared (FT-IR) spectroscopy to study the reversible presssure-induced unfolding and refolding of ribonuclease A (RNase A) and compare it with the results obtained for the temperature-induced transition. FT-IR spectroscopy monitors changes in the secondary structural properties (amide I' band) or tertiary contacts (tyrosine band) of the protein upon pressurization or depressurization. Analysis of the amide I' spectral components reveals that the pressure-induced denaturation process sets in at 5. 5 kbar at 20 degrees C and pH 2.5. It is accompanied by an increase in disordered structures while the content of beta-sheets and alpha-helices drastically decreases. The denatured state above 7 kbar retains nonetheless some degree of beta-like secondary structure and the molecule cannot be described as an extended random coil. Increase of pH from 2.5 to 5.5 has no influence on the structure of the pressure-denatured state; it slightly changes the stability of the protein only. All experimental evidence indicates that the pressure-denatured states of monomeric proteins have more secondary structure than the temperature-denatured states. Different modes of denaturation, including pressure, may correlate differently with the roughness of the energy scale and slope of the folding funnel. For these reasons we have also carried out pressure-jump kinetic studies of the secondary structural evolution in the unfolding/refolding reaction of RNase A. In agreement with the theoretical model presented by Hummer et al. [(1998) Proc. Natl. Acad. Sci. U.S.A. 95, 1552-1555], the experimental data show that pressure slows down folding and unfolding kinetics (here 1-2 orders of magnitude), corresponding to an increasingly rough landscape. The kinetics remains non-two-state under pressure. Assuming a two-step folding scenario, the calculated relaxation times for unfolding of RNase A at 20 degrees C and pH 2.5 can be estimated to be tau(1) approximately 0.7 min and tau(2) approximately 17 min. The refolding process is considerably faster (tau(1) approximately 0.3 min, tau(2) approximately 4 min). Our data show that the pressure stability and pressure-induced unfolding/refolding kinetics of monomeric proteins, such as wild-type staphylococcal nuclease (WT SNase) and RNase A, may be significantly different. The differences are largely due to the four disulfide bonds in RNase A, which stabilize adjacent structures. They probably lead to the much higher denaturation pressure compared to SNase, and this might also explain why the volume change of WT SNase upon unfolding is about twice as large.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.