The theoretical docking study, conducted on a sample of previously reported for anti-inflammatory and antioxidant activities of Taxifolin at the binding site of Leishmania infantum trypanothione reductase (Try R) examine interaction energy. Taxifolin is widely used in the traditional medicine have been investigated for their putative chemo preventive and antileishmanial properties for the last few decades. A theoretical docking study, the evaluation of Taxifolin as inhibitor of trypanothione reductase a validated drug target enzyme of the Leishmania parasite. Taxifolin was found to bind at active site of L. infantum TryR with lowest binding energy and RMSD values to be-8.82 Kcal/Mol and 2.0 Å respectively. Docking analysis of TryR with ligand enabled us to identify specific residues viz. Ser-14, Ala-47, Ser-162, Thr-336 and Arg-286, within the TryR binding pocket to play an important role in ligand binding affinity. The availability of TryR built model, together with insights gained from docking analysis will promote the rational design of potent and selective TryR inhibitor as antileishmanial therapeutic. The study contributes towards understanding mechanism of antileshmanial effect of the Taxifolin. This compound has shown promising biological activity in preliminary studies by targeting multiple signaling pathways. Thus on the basis of our in silico studies we hypothesize that this compound into Taxifolin can be inhibitory effect on against leishmaniasis.
A.niger Rnase was designed from ACTBIND (PDB ID: 3D3Z). Yeast actin-human gelsolin segment 1 complex (PDB ID: 1YAG) was used as template for L. donovani actin protein for 3D model in Modeller9v8. These models were testified by PROCHECK, ERRAT, WHAT-IF, PROSA2003 and VERIFY-3D. All evidences suggest that the geometric quality of the backbone conformation, energy profile, residue interaction and contact of the structures were well within the limits of reliable structures. The interaction energy of docking was calculated using the HEX server. Etotal and calculated RMSD values were -1.902, -9.323 kcal moL-1 and 0.402 Ã , respectively. The study presented here has an advantage to design molecules that may have antileishmanial activity
In order to understand the mechanism of molecular interactions at the active site of Tryparedoxin Peroxidase (Try P), homology modeling and docking studies were performed. We generated a Three-Dimensional (3D) model of target protein based on the Crystal structure of Leishmania Major Try PI (PDB ID: 3TUE) using modeler software. Docking analysis was carried out to study the effects of methotrexate on Tryparedoxin Peroxidase (Try P). Inhibition of the Tryparedoxin peroxidase interaction has become a new therapeutic strategy in treating leishmaniasis. Docking analysis was carried out to study the effects of methotrexate on Tryparedoxin Peroxidase (TryP). Tryparedoxin peroxidase of Trypanosomatidae family functions as antioxidant through their peroxidase and peroxynitrite reductase activities. The theoretical docking study, conducted on a sample previously reported for anti-cancer properties of Methotrexate at the binding site of 3D models of Tryparedoxin Peroxidase of Leishmania braziliensis (L. braziliensis Try P) examine interaction energy. Our studies indicate that Methotrexate displays potent activity against Try P with lowest binding energy and RMSD values to be -14.5879 Kcal/Mol and 2.0 A. The results of the present study clearly demonstrated the Tryparedoxin Peroxidase inhibitory activity by methotrexate in in silico docking analysis and in vitro assay which contributes towards understanding the mechanism of antileishmanial activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.