The focus of this article is to present an effective anomaly detection model for an encrypted network session by developing a novel IP reputation scoring model that labels the incoming session IP address based on the most similar IP addresses in terms of both network and geo-contextual knowledge. We provide empirical evidence that considering not only traditional network information but also geo-contextual information provides better threat assessment. The reputation scores provide a means to quantitatively capture good and bad IP behavior, making our model ideal for detecting malicious network behavior. With network encryption being the most practical solution to data security and privacy today, our approach expands the network administrator's ability to make decisions about IP addresses' trustworthiness in an encrypted session with limited network information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.