Abstract-In this article, we formalize and model context in terms of a set of concepts grounded in the sensorimotor interactions of a robot. The concepts are modeled as a web using Markov Random Field, inspired from the concept web hypothesis for representing concepts in humans. On this concept web, we treat context as a latent variable of Latent Dirichlet Allocation (LDA), which is a widely-used method in computational linguistics for modeling topics in texts. We extend the standard LDA method in order to make it incremental so that (i) it does not re-learn everything from scratch given new interactions (i.e., it is online) and (ii) it can discover and add a new context into its model when necessary. We demonstrate on the iCub platform that, partly owing to modeling context on top of the concept web, our approach is adaptive, online and robust: It is adaptive and online since it can learn and discover a new context from new interactions. It is robust since it is not affected by irrelevant stimuli and it can discover contexts after a few interactions only. Moreover, we show how to use the context learned in such a model for two important tasks: object recognition and planning.
Abstract-In this work, we model context in terms of a set of concepts grounded in a robot's sensorimotor interactions with the environment. For this end, we treat context as a latent variable in Latent Dirichlet Allocation, which is widely used in computational linguistics for modeling topics in texts. The flexibility of our approach allows many-to-many relationships between objects and contexts, as well as between scenes and contexts. We use a concept web representation of the perceptions of the robot as a basis for context analysis. The detected contexts of the scene can be used for several cognitive problems. Our results demonstrate that the robot can use learned contexts to improve object recognition and planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.