Bag-of-words (BoW) modeling has yielded successful results in document and image classification tasks. In this study, we explore the use of BoW for cognitive state classification. We estimate a set of common patterns embedded in the Functional Magnetic Resonance Imaging (fMRI) time series recorded in three dimensional voxel coordinates by clustering the Blood Oxygen Level Dependent (BOLD) responses. We use these common patterns, called the code-words, to encode activities of both individual voxels and group of voxels, and obtain BoW representations on which we train linear classifiers. We experimented with a number of different BoW representations such as encoding spatial and functional neighbors, spatial pooling, and soft and hard encoding. Our experimental results show that, on a multiclass fMRI dataset, the hard BoW encoding, when applied to individual voxels, significantly improves the classification accuracy (an average 7.22% increase when applied on average intensity per voxel and an average 15.52% increase when applied to raw intensity time series per voxel) compared to a classical multi voxel pattern analysis (MVPA) method. This v preliminary result gives us a clue to generate a code-book for fMRI data which may be used to represent a variety of cognitive states to study the human brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.