A highly efficient antenna array for unmanned aerial vehicle (UAV) mounted radar applications with a tilted-beam characteristic and a 360° beam coverage is proposed in this paper. The proposed array antenna is configured by four planar super J-pole antennas with 2-dimensional ground reflectors. Each super J-pole antenna element provides a high directivity where the peak gain is tilted about 45° facing toward the ground from the bottom of a UAV body. Thus, the air-to-ground communication difficulty due to the altitude difference between the UAV and ground targets can be effectively solved. Further, the four super J-pole elements with a switched operation can cover the whole 360° areas around the UAV while high antenna gain is maintained. To verify the performance, the proposed structure was implemented at 5.9 GHz with an overall volume of 0.88 × 0.88 × 0.83 λo3. The measured 10-dB impedance bandwidths for all four antenna elements were better than 27.2% and the isolation among the four antenna ports was also always better than 13 dB. The measured peak gain was better than 7.4 dBi and tilted at 45° in the elevation angle. Lastly, the measured half power beam widths in elevation and azimuth planes were more than 60° and 87°, respectively.
This article presents a dual-polarized, high gain multi-beam and high T/Rx channel-to-channel isolation antenna module for 24 GHz sensor applications. The proposed antenna is configured to support 2-Tx and 2-Rx channels with a pair of vertically polarized (VP) radiation pattern and a pair of horizontally polarized (HP) radiation pattern. Further, each linearly polarized T/Rx antenna is configured by 2 × 4 array with a multi-layer integrated feed network, resulting in four sets of 2 × 4 array antennas fabricated within a single printed circuit board (PCB). Since multiple RF channels must be ensured with minimal interference, high antenna-to-antenna, including Tx-to-Tx, Rx-to-Rx, and Tx-to-Rx port isolations in the proposed antenna are achieved by multi-layered feed network and four sets of T-shaped magnetic walls. To verify the performance of the proposed structure, a 2-Tx and 2-Rx antenna module was fabricated at 24 GHz. The fabricated antenna showed a measured maximum 10-dB impedance bandwidth of 3.9% with a maximum measured gain of 11.7 dBi, considering both Tx and Rx. Further, the measured channel-to-channel isolations were always better than 35.6 dB at 24 GHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.