Mice containing livers repopulated with human hepatocytes would provide excellent in vivo models for studies on human liver diseases and hepatotropic viruses, for which no permissive cell lines exist. Here, we report partial repopulation of the liver of immunodeficient urokinase-type plasminogen activator (uPA)/recombinant activation gene-2 (RAG-2) mice with normal human hepatocytes isolated from the adult liver. In the transplanted mice, the production of human albumin was demonstrated, indicating that human hepatocytes remained functional in the mouse liver for at least 2 months after transplantation. Inoculation of transplanted mice with human hepatitis B virus (HBV) led to the establishment of productive HBV infection. According to human-specific genomic DNA analysis and immunostaining of cryostat liver sections, human hepatocytes were estimated to constitute up to 15% of the uPA/RAG-2 mouse liver. This is proof that normal human hepatocytes can integrate into the mouse hepatic parenchyma, undergo multiple cell divisions, and remain permissive for a human hepatotropic virus in a xenogenic liver. This system will provide new opportunities for studies on etiology and therapy of viral and nonviral human liver diseases, as well as on hepatocyte biology and hepatocellular transplantation. Persistent infection with hepatitis B virus (HBV) is a major worldwide health problem, and chronically infected individuals are at high risk for developing cirrhosis and hepatocellular carcinoma. 1,2 Despite the availability of an HBV vaccine, there are still more than 350 million chronically infected people worldwide, and the few antiviral treatments currently available have a limited rate of efficacy. The narrow host range of HBV and the lack of both in vitro systems and of convenient animal models have greatly hampered our understanding of the complete virus life cycle, as well as the development of more effective antiviral drugs aimed at eradicating the virus from chronic carriers. 3 Chimpanzees are the only animal species infectable with HBV, 4,5 but studies with these animals and evaluation of antiviral therapies are severely restricted because of their limited availability and high costs. Animal models based on HBV-related hepadnaviruses, such as woodchuck and Pekin duck hepatitis B viruses, are often used for assessment of antiviral drugs 6-8 and have provided important information about factors involved in establishment of virus infection, viral persistence, and hepatocarcinogenesis. 9-14 However, woodchucks are relatively large animals of outbred origins that are difficult to handle in many laboratories, and chronic hepadnavirus infection in birds does not lead to cancer. The development of HBV-expressing transgenic mice has also provided important insights regarding viral pathobiology and the role of HBV gene products in hepatocellular injury. 12,[15][16][17][18][19] Although infectious virus can be produced in transgenic mice, their hepatocytes are not permissive for infection. Therefore, the still-unknown early step...
Oncogenic Kit mutations are found in somatic gastrointestinal (GI) stromal tumors (GISTs) and mastocytosis. A mouse model for the study of constitutive activation of Kit in oncogenesis has been produced by a knock-in strategy introducing a Kit exon 11-activating mutation into the mouse genome based on a mutation found in a case of human familial GIST syndrome. Heterozygous mutant Kit V558⌬ ͞؉ mice develop symptoms of disease and eventually die from pathology in the GI tract. Patchy hyperplasia of Kit-positive cells is evident within the myenteric plexus of the entire GI tract. Neoplastic lesions indistinguishable from human GISTs were observed in the cecum of the mutant mice with high penetrance. In addition, mast cell numbers in the dorsal skin were increased. Therefore Kit V558⌬ ͞؉ mice reproduce human familial GISTs, and they may be used as a model for the study of the role and mechanisms of Kit in neoplasia. Importantly, these results demonstrate that constitutive Kit signaling is critical and sufficient for induction of GIST and hyperplasia of interstitial cells of Cajal. Kit encodes a growth factor receptor with ligand-dependent tyrosine kinase activity (1-3). Kit ligand (KitL) is the only known ligand of the Kit receptor (4). KitL binding to the receptor mediates receptor dimerization, activation of kinase activity, and autophosphorylation. Subsequently, Kit activates several signaling cascades, leading to cell proliferation, cell survival, and other cellular responses. Kit and KitL are encoded at the White spotting (W) and Steel (Sl) loci in the mouse, respectively (4-6). Mutations at the murine W and Sl loci generate deficiencies in several major cell systems during embryogenesis and in the postnatal animal: in hematopoiesis, melanogenesis, gametogenesis, and intestinal pacemaker cells. In hematopoiesis Kit receptor signaling is critical in the stem cell hierarchy, erythropoiesis, mast cell development and function, megakaryopoiesis, and lymphopoiesis (7-10). Interstitial cells of Cajal (ICC) function as pacemaker cells in the gastrointestinal (GI) tract and they mediate inputs from the enteric nervous system to smooth muscle cells. ICC express the Kit receptor tyrosine kinase and inhibition of Kit function interferes with the autonomous movement of the GI tract (11-13).GI stromal tumor (GIST) is the most common mesenchymal neoplasm of the human intestinal tract. GISTs are a heterogeneous group of tumors, which historically had been classified either as leiomyoma, leiomyosarcoma, or GI autonomic nerve tumors (14). GISTs express Kit and they are thought to derive from a Kit ϩ or Kit low ICC progenitor or ICC through somatic mutation, based on immunophenotypic and ultrastructural similarities (15).Originally, we had identified Kit as the oncogene of an acute transforming feline retrovirus, the HZ4-FeSV (1). However, a role for Kit in human neoplasia has been emerging only more recently. First, human and murine mast cell lines were found to carry Kit-activating mutations in the activation loop of the kinas...
Defective hepatitis B virus (HBV) genomes derived from packaging and reverse transcription of spliced RNA pregenomes were reported to be associated with progression to chronic infection. Since only two types with similarly spliced regions were characterized so far we reasoned that additional "spliced" genome variants may exist. Therefore, we isolated a large number of defective HBV genomes from sera of seven chronic carriers by full-length PCR. Forty-eight were found to contain deletions caused by splicing as identified by cloning, subgenomic PCR, and sequencing. In total, 11 types of spliced genomes derived from excision of 10 different introns were present in various combinations in each serum. This diversity resulted from alternative usage of five splice donor and four acceptor sites present in most but not all HBV genotypes. All spliced genomes shared sequence elements essential for replication as well as for transcription of the pre-C and pregenome/C mRNAs and the X mRNA. Moreover, all contained the coding regions for the X protein and for precore/core or precore/ core fusion proteins but lacked the pre-S/S gene promoters. These data demonstrate substantial and HBV genotype-dependent diversity of spliced genomes from which a variety of aberrant precore/core fusion proteins and normal X protein but no functional envelope and P proteins could be expressed. These genomes and the encoded proteins may play a role in the viral life cycle, persistence, and pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.