We have screened the Eurofan deletion strain collection for mutants that are either sensitive or resistant to three drugs known to affect intracellular transport: brefeldin A, monensin and C2‐ceramide. Drug‐sensitive mutants were analysed by complementation with cognate clones and tetrad analysis to confirm that the phenotypes are linked to the deletions. Out of 620 deletion strains, we found 18 mutants that were sensitive to either brefeldin A, monensin or both. Several of these mutants are deleted for genes that are known to be involved in intracellular transport, membrane biogenesis and/or cell wall biosynthesis. Among such previously known genes were VAM6, VAC7, SYS1, TLG2, RCY1, ERG4, ALG9 and ALG12. Some other genes recovered in our screen were not previously implicated in intracellular transport, but are related to other yeast genes with such a function. Still other genes encode proteins with no obvious link to intracellular transport. Several of these are putative transcription factors or RNA‐binding proteins, which suggests that they may affect drug sensitivity by modulating the expression of other genes or proteins. Copyright © 2000 John Wiley & Sons, Ltd.
Here we identify Mon1p as being essential for the cvt-pathway and autophagy. Thus, mon1v v cells are impaired in proaminopeptidase I maturation and homozygous diploid mon1v v cells do not sporulate. Quantitative autophagy measurements suggest a complete autophagy block. The autophagosomal marker protein GFP-Aut7p accumulates in mon1v v cells at punctate structures outside the vacuole. Furthermore, proaminopeptidase I accumulates in mon1v v cells in a proteinase-protected form. Our data demonstrate that mon1v v cells are defective in the fusion of cvt-vesicles and autophagosomes with the vacuole. Consistent with this, GFP-Mon1p localizes to the cytosol and to punctate structures within the cytosol.
We have screened a complete collection of yeast knockout mutants for sensitivity to monensin, an ionophore that interferes with intracellular transport. A total of 63 sensitive strains were found. Most of the strains were deleted for genes involved in post-Golgi traffic, with an emphasis on vacuolar biogenesis. A high correlation was thus seen with VPS and VAM genes, but there were also significant differences between the three sets of genes. A weaker correlation was seen with sensitivity to NaCl, in particular rate of growth effects. Interestingly, all 14 genes encoding subunits of the vacuolar H(+)-ATPase (V-ATPase) were absent in our screen, even though they appeared in the VPS or VAM screens. All monensin-sensitive mutants that could be tested interact synthetically with a deletion of the A subunit of the V-ATPase, Vma1. Synthetic lethality was limited to mutations affecting endocytosis or retrograde transport to Golgi. In addition, vma1 was epistatic over the monensin sensitivity of vacuolar transport mutants, but not endocytosis mutants. Deletions of the two isoforms of the V-ATPase a subunit, Vph1 and Stv1 had opposite effects on the monensin sensitivity of a ypt7 mutant. These findings are consistent with a model where monensin inhibits growth by interfering with the maintenance of an acidic pH in the late secretory pathway. The synthetic lethality of vma1 with mutations affecting retrograde transport to the Golgi further suggests that it is in the late Golgi that a low pH must be maintained.
This study tested the hypothesis that sensitivity of Escherichia coli to lactic acid at concentrations relevant for fermented sausages (pH 4.6, 150 mM lactic acid, a w = 0.92, temperature = 20 or 27°C) increases with increasing growth rate. For E. coli strain 683 cultured in TSB in chemostat or batch, subsequent inactivation rates when exposed to lactic acid stress increased with increasing growth rate at harvest. A linear relationship between growth rate at harvest and inactivation rate was found to describe both batch and chemostat cultures. The maximum difference in T90, the estimated times for a one-log reduction, was 10 hours between bacteria harvested during the first 3 hours of batch culture, that is, at different growth rates. A 10-hour difference in T90 would correspond to measuring inactivation at 33°C or 45°C instead of 37°C based on relationships between temperature and inactivation. At similar harvest growth rates, inactivation rates were lower for bacteria cultured at 37°C than at 15–20°C. As demonstrated for E. coli 683, culture conditions leading to variable growth rates may contribute to variable lactic acid inactivation rates. Findings emphasize the use and reporting of standardised culture conditions and can have implications for the interpretation of data when developing inactivation models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.