This study aimed to elucidate the effects of two soy antinutrients, saponins and phytosterols, on growth, intestinal health and function of European sea bass juveniles. Seven fishmeal-based diets were formulated: a control diet without antinutrients and six experimental diets containing low or high levels of soyasaponins (SapL and SapH, respectively), low or high levels of phytosterols (PhytL and PhytH, respectively) and low or high levels of soyasaponins + phytosterols (SapPhytL and SapPhytH, respectively). A feeding trial was conducted for 59 days after which blood was collected for plasmatic cholesterol quantification and intestinal samples were collected for histology, digestive enzymes activity and gene expression analysis. Histology was also performed at day 15. PhytL resulted in high distal intestine (DI) relative weight and decreased plasma cholesterol, while PhytH caused inflammatory changes in the DI. SapH depressed maltase and alkaline phosphatase activity in DI and the histological evaluation indicated some inflammatory changes. The SapPhytH resulted in decreased maltase activity in the DI and indications of inflammatory changes that were supported by the results on gene expression profiles. The antinutrients tested did not compromise growth, however, caused some gastrointestinal disturbance that may affect fish in the long term.
The cellular prion protein PrPC is highly expressed in neurons, but also present in non-neuronal tissues, including the testicles and spermatozoa. Most immune cells and their bone marrow precursors also express PrPC. Clearly, this protein operates in highly diverse cellular contexts. Investigations into putative stress-protective roles for PrPC have resulted in an array of functions, such as inhibition of apoptosis, stimulation of anti-oxidant enzymes, scavenging roles, and a role in nuclear DNA repair. We have studied stress resilience of spermatozoa and peripheral blood mononuclear cells (PBMCs) derived from non-transgenic goats that lack PrPC (PRNPTer/Ter) compared with cells from normal (PRNP+/+) goats. Spermatozoa were analyzed for freeze tolerance, DNA integrity, viability, motility, ATP levels, and acrosome intactness at rest and after acute stress, induced by Cu2+ ions, as well as levels of reactive oxygen species (ROS) after exposure to FeSO4 and H2O2. Surprisingly, PrPC-negative spermatozoa reacted similarly to normal spermatozoa in all read-outs. Moreover, in vitro exposure of PBMCs to Doxorubicin, H2O2 and methyl methanesulfonate (MMS), revealed no effect of PrPC on cellular survival or global accumulation of DNA damage. Similar results were obtained with human neuroblastoma (SH-SY5Y) cell lines stably expressing varying levels of PrPC. RNA sequencing of PBMCs (n = 8 of PRNP+/+ and PRNPTer/Ter) showed that basal level expression of genes encoding DNA repair enzymes, ROS scavenging, and antioxidant enzymes were unaffected by the absence of PrPC. Data presented here questions the in vitro cytoprotective roles previously attributed to PrPC, although not excluding such functions in other cell types or tissues during inflammatory stress.
The effects of in utero and lactational exposure to two structurally different polychlorinated biphenyl (PCB) congeners on follicular dynamics and the pituitary-gonadal axis in female lambs were investigated. Pregnant ewes received corn oil, PCB 118, or PCB 153, and offspring was maintained until 60 days postpartum. Ovarian follicles were quantified using stereology. Plasma luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured using radioimmunoassay before and after administration of a gonadotropin releasing hormone (GnRH) analog. PCB 118 exposure increased numbers of transitional, secondary, and the sum of secondary, early antral, and antral (Σsecondary-antral) follicles, PCB 153 exposure only increased the number of primary follicles. GnRH-induced LH levels were significantly elevated in the PCB 153 exposure group. We conclude that PCB 153 and PCB 118 alter follicular dynamics in lambs and modulate the responsiveness of the pituitary gland to GnRH.
SUMMARY The in vivo swelling and hydration of maturing oocytes of Atlantic halibut Hippoglossus hippoglossus were studied in order to characterise the osmotic mechanism underlying oocyte hydration in oviparous marine teleosts that spawn pelagic eggs. Sequential biopsies from two females, spanning four hydration cycles, were examined by osmometry, solute analysis and electrophoresis of dissected hydrating oocytes and ovulated eggs. The hydration cycle of the biopsied halibuts lasted 33–54 h. The majority of ovarian oocytes existed in a pre-hydrated condition (individual wet mass approx. 3.7 mg, diameter approx. 1.87 mm, 63 % H2O) with easily visible, non-coalesced, yolk platelets. Group-synchronous batches of the pre-hydrated oocytes increased in individual wet mass, diameter and water content to reach the ovulated egg stage of approximately 15 mg, 3.0 mm and 90 % H2O, respectively. The yolk osmolality of the hydrating oocytes was transiently hyperosmotic to the ovarian fluid (range 305–350 mOsmol l–1) with a peak osmolality of about 450 mOsmol l–1 in oocytes of 6–8 mg individual wet mass. The transient hyperosmolality was well accounted for by the increase in oocyte content of free amino acids (FAAs; approx. 2300 nmol oocyte–1), K+ (approx. 750 nmol oocyte–1), Cl– (approx. 900 nmol oocyte–1), total ammonium (approx. 300 nmol oocyte–1) and inorganic phosphate (Pi; approx. 200 nmol oocyte–1) when relating to the increase in cellular water. The oocyte content of Na+ did not increase during the hydration phase. Extensive proteolysis of yolk proteins, in particular a 110 kDa protein, correlated with the increase in the FAA pool, although the latter increased by approx. 20 % more than could be accounted for by the decrease in the oocyte protein content. Both indispensable and dispensable amino acids increased in the FAA pool, and particularly serine, alanine, leucine, lysine, glutamine and glutamate. Taurine content remained stable at approx. 70 nmol oocyte–1 during oocyte hydration. The results show that final hydration of Atlantic halibut oocytes is caused by an osmotic water uptake in which FAAs, derived mainly from the hydrolysis of a 110 kDa yolk protein, contribute approximately 50 % of the yolk osmolality and ions (Cl–, K+, Pi, NH4+) make up the balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.