Seabed data acquisition methods offer numerous advantages over towed streamer data. These advantages can lead to improved static and dynamic reservoir characterization. By recording complete vector field data at the sea floor with full azimuth acquisition improved shallow resolution, signal-to-noise ratio, spectral content, deep imaging and 3D illumination can be achieved. Also in the presence of obstacles such as production facilities a regular coverage can be assured.
Autonomous node technology has been developed to a fully commercial system. It has demonstrated improved imaging of complex reservoir with both pressure (PP) and converted shear (PS) with stable and consistent measurements achieved by very well planted nodes into the sea floor and full azimuth acquisition with densely sampled shots.
It has been experienced that the background response from well planted nodes can be repeated in a 4C-4D scenario when the coupling conditions are the same. The vector fidelity in the node system will secure this behavior. In addition, the accurate positioning and re-positioning of the nodes under realistic water depth ranges gives positioning accuracy close to permanently buried cable systems. An experiment performed on the Volve field in the North Sea with pairs of nodes planted side by side clearly confirmed the high degree of stability in the coupling and the repeatability of the measurements from all components. At 100 m water depth all the planted nodes were within a short radius around the pre-plot position.
A cost sensitivity study of different 4C-4D node scenarios depending of field size, water depths and node spacing indicates that, for larger field sizes (300-600km2 receiver coverage), the alternative use of nodes could be significantly more cost effective than permanently buried cable systems. Moreover, there are advantages linked to the acquisition geometry, operation, zero equipment life time risk and low initial investment.
Introduction
Marine seismic exploration and reservoir imaging have been through numerous stages of adjustments and improvements. Towed streamer surveys from 2D to 3D and now to 4D dominate the offshore seismic survey with a well established technology which remains the most common acquisition with narrow azimuth coverage. New techniques such as " single sensor recording?? (Egan et al, 2005), " over-under?? (Singh et al, 1996) and " wide azimuth?? (Campbell et al, 2002) have recently delivered impressive results. These techniques have raised the cost and complexity to more traditionally " simple?? towed streamer operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.