Little is known about the impact of cytochrome P450 polymorphisms on the metabolism of trimipramine, which is still widely used as antidepressant due to its positive effect on sleep patterns. A single oral dose of 75 mg trimipramine was given to 42 healthy volunteers selected according to their CYP2D6, CYP2C19, and CYP2C9 genotypes. The reference group included 8 subjects with homozygous active wild-type genotypes of all 3 enzymes (EM). This group was compared with 7 intermediate (IM) with 1 and 7 poor metabolizers (PM) with zero active alleles of CYP2D6 and CYP2C19, respectively, and with 4 subjects with the genotype CYP2C9*3/*3. Pharmacokinetics of trimipramine and its demethylated metabolite strongly depended on the CYP2D6 genotype. Median oral clearance of trimipramine was 276 L/h (range 180-444) in the reference group but only 36 L/h (range 24-48) in CYP2D6 PMs (P < 0.001). These differences could only be explained by an effect of CYP genotypes on both parameters, systemic clearance and bioavailability, the latter being at least 3-fold higher in CYP2D6 PMs than in the reference group. The desmethyltrimipramine area under the concentration-time curve was 40-fold greater in CYP2D6 PMs than in the reference group (1.7 vs. 0.04 mg/L x h in EMs), but below the quantification limit in most carriers of deficiencies of CYP2C19 or CYP2C9. This indicates that both CYP2C enzymes contribute to the demethylation of desmethyltrimipramine and CYP2D6 to further metabolism.
In-vitro data indicated a contribution of cytochrome P450 enzymes 1A2, 3A4, 2C9, 2C19 and 2D6 to biotransformation of doxepin. We studied the effects of genetic polymorphisms in CYP2D6, CYP2C9 and CYP2C19 on E- and Z-doxepin pharmacokinetics in humans. Doxepin kinetics was studied after a single oral dose of 75 mg in healthy volunteers genotyped as extensive (EM), intermediate (IM) and poor (PM) metabolizers of substrates of CYP2D6 and of CYP2C19 and as slow metabolizers with the CYP2C9 genotype *3/*3. E-, Z-doxepin and -desmethyldoxepin were quantified in plasma by HPLC. Data were analyzed by non-parametric pharmacokinetics and statistics and by population pharmacokinetic modeling considering effects of genotype on clearance and bioavailability. Mean E-doxepin clearance (95% confidence interval) was 406 (390-445), 247 (241-271), and 127 (124-139) l h(-1) in EMs, IMs and PMs of CYP2D6. In addition, EMs had about 2-fold lower bioavailability compared with PMs indicating significant contribution of CYP2D6 to E-doxepin first-pass metabolism. E-doxepin oral clearance was also significantly lower in carriers of CYP2C9*3/*3 (238 l h(-1) ). CYP2C19 was involved in Z-doxepin metabolism with 2.5-fold differences in oral clearances (73 l h(-1) in CYP2C19 PMs compared with 191 l h(-1) in EMs). The area under the curve (0-48 h) of the active metabolite -desmethyldoxepin was dependent on CYP2D6 genotype with a median of 5.28, 1.35, and 1.28 nmol l h(-1) in PMs, IMs, and EMs of CYP2D6. The genetically polymorphic enzymes exhibited highly stereoselective effects on doxepin biotransformation in humans. The CYP2D6 polymorphism had a major impact on E-doxepin pharmacokinetics and CYP2D6 PMs might be at an elevated risk for adverse drug effects when treated with common recommended doses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.