The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (http://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point‐in‐time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14748. G protein‐coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid‐2019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC‐IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Four adenosine receptors have been cloned from many mammalian and some non-mammalian species. In each case the translated part of the receptor is encoded by two separate exons. Two separate promoters regulate the A1 receptor expression, and a similar situation may pertain also for the other receptors. The receptors are expressed in a cell and tissue specific manner, even though A1 and A2B receptors are found in many different cell types. Emerging data indicate that the receptor protein is targeted to specific parts of the cell. A1 and A3 receptors activate the Gi family of G proteins, whereas A2A and A2B receptors activate the Gs family. However, other G proteins can also be activated even though the physiological significance of this is unknown. Following the activation of G proteins several cellular effector pathways can be affected. Signaling via adenosine receptors is also known to interact in functionally important ways with signaling initiated via other receptors.
The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point‐in‐time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein‐coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid‐2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC‐IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
In utero exposure to ⌬ 9 -tetrahydrocannabinol (⌬ 9 -THC), the active component from marijuana, induces cognitive deficits enduring into adulthood. Although changes in synaptic structure and plasticity may underlie ⌬ 9 -THC-induced cognitive impairments, the neuronal basis of ⌬ 9 -THC-related developmental deficits remains unknown. Using a Boyden chamber assay, we show that agonist stimulation of the CB 1 cannabinoid receptor (CB1R) on cholecystokinin-expressing interneurons induces chemotaxis that is additive with brain-derived neurotrophic factor (BDNF)-induced interneuron migration. We find that Src kinase-dependent TrkB receptor transactivation mediates endocannabinoid (eCB)-induced chemotaxis in the absence of BDNF. Simultaneously, eCBs suppress the BDNF-dependent morphogenesis of interneurons, and this suppression is abolished by Src kinase inhibition in vitro. Because sustained prenatal ⌬ 9 -THC stimulation of CB1Rs selectively increases the density of cholecystokinin-expressing interneurons in the hippocampus in vivo, we conclude that prenatal CB 1R activity governs proper interneuron placement and integration during corticogenesis. Moreover, eCBs use TrkB receptor-dependent signaling pathways to regulate subtype-selective interneuron migration and specification.corticogenesis ͉ drug abuse ͉ neurotrophin E ndogenous cannabinoids, such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG), modulate synaptic plasticity by the retrograde control of neurotransmitter release (1). Accordingly, a compartmentalization of endocannabinoid (eCB) synthesis and action has been demonstrated in adult brain (1-3). eCBs are predominantly synthesized in dendritic compartments and signal through presynaptic G i/o protein-coupled CB 1 cannabinoid receptors (CB 1 Rs) (4-6). The adult phenotype of cannabinoid systems is achieved through a series of developmentally regulated events culminating in high CB 1 R expression on cholecystokinin (CCK)-containing GABAergic interneurons (CB 1 R ϩ cells) in the hippocampus and neocortex (3,5,6).Recent studies have demonstrated the existence of functional CB 1 Rs in developing cortical neurons (7). A coincidence of eCB synthesis and release and CB 1 R activation within axonal growth cones was postulated to provide an eCB-driven reinforcement loop that regulates axonal growth and guidance (8). Although the functional significance of CB 1 Rs during assembly of cortical neuronal circuitries is unknown, their developmental impact is illustrated by long-lasting cognitive, motor, and social disturbances in offspring exposed prenatally to cannabis (9, 10).The majority of cortical interneurons are derived from extracortical precursor pools and undergo long-distance migration before inhabiting specific cortical layers (11, 12). Interneuron specification is in part governed by epigenetic cues within the neocortex, including brain-derived neurotrophic factor (BDNF) (12-14). Considering that pyramidal cells in the juvenile neocortex harbor the capacity of eCB synthesis and release (15), we hypothesiz...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.