eThe interaction of environmental bacteria with unicellular eukaryotes is generally considered a major driving force for the evolution of intracellular pathogens, allowing them to survive and replicate in phagocytic cells of vertebrate hosts. To test this hypothesis on a genome-wide level, we determined for the intracellular pathogen Mycobacterium marinum whether it uses conserved strategies to exploit host cells from both protozoan and vertebrate origin. Using transposon-directed insertion site sequencing (TraDIS), we determined differences in genetic requirements for survival and replication in phagocytic cells of organisms from different kingdoms. In line with the general hypothesis, we identified a number of general virulence mechanisms, including the type VII protein secretion system ESX-1, biosynthesis of polyketide lipids, and utilization of sterols. However, we were also able to show that M. marinum contains an even larger set of host-specific virulence determinants, including proteins involved in the modification of surface glycolipids and, surprisingly, the auxiliary proteins of the ESX-1 system. Several of these factors were in fact counterproductive in other hosts. Therefore, M. marinum contains different sets of virulence factors that are tailored for specific hosts. Our data imply that although amoebae could function as a training ground for intracellular pathogens, they do not fully prepare pathogens for crossing species barriers.
Low-density lipoprotein receptor-related protein (LRP) is an endocytic receptor that binds multiple distinct ligands, including blood coagulation factor VIII (FVIII). Coagulation factor VIII (FVIII)1 serves its role in the intrinsic coagulation pathway as a cofactor for factor IXa (FIXa) in the proteolytic activation of factor X (for reviews, see Refs. 1 and 2). Functional absence of FVIII is associated with the bleeding disorder hemophilia A. The cofactor is a 300-kDa glycoprotein that comprises a discrete domain structure (A1-a1-A2-a2-B-a3-A3-C1-C2) (2, 3). The A and C domains share 30 -40% homology with the A and C domains of the structurally related protein factor V (FV), whereas the B domain and the short acidic regions a1, a2, and a3 are unique to FVIII (4).In plasma, FVIII circulates as a metal ion-linked heterodimer consisting of a 90 -220-kDa heavy chain (A1-a1-
Mycobacteria produce a capsule layer, which consists of glycan-like polysaccharides and a number of specific proteins. In this study, we show that, in slow-growing mycobacteria, the type VII secretion system ESX-5 plays a major role in the integrity and stability of the capsule. We have identified PPE10 as the ESX-5 substrate responsible for this effect. Mutants in esx-5 and ppe10 both have impaired capsule integrity as well as reduced surface hydrophobicity. Electron microscopy, immunoblot and flow cytometry analyses demonstrated reduced amounts of surface localized proteins and glycolipids, and morphological differences in the capsular layer. Since capsular proteins secreted by the ESX-1 system are important virulence factors, we tested the effect of the mutations that cause capsular defects on virulence mechanisms. Both esx-5 and ppe10 mutants of Mycobacterium marinum were shown to be impaired in ESX-1-dependent hemolysis. In agreement with this, the ppe10 and esx5 mutants showed reduced recruitment of ubiquitin in early macrophage infection and intermediate attenuation in zebrafish embryos. These results provide a pivotal role for the ESX-5 secretion system and its substrate PPE10, in the capsular integrity of pathogenic mycobacteria. These findings open up new roads for research on the mycobacterial capsule and its role in virulence and immune modulation.
SummaryThe pathogenicity of mycobacteria is closely associated with their ability to export virulence factors. For this purpose, mycobacteria possess different protein secretion systems, including the accessory Sec translocation pathway, SecA2. Although this pathway is associated with intracellular survival and virulence, the SecA2-dependent effector proteins remain largely undefined. In this work, we studied a Mycobacterium marinum secA2 mutant with an impaired capacity to initiate granuloma formation in zebrafish embryos. By comparing the proteomic profile of cell envelope fractions from the secA2 mutant with wild type M. marinum, we identified putative SecA2-dependent substrates. Immunoblotting procedures confirmed SecA2-dependent membrane localization for several of these proteins, including the virulence factor protein kinase G (PknG). Interestingly, phenotypical defects of the secA2 mutant are similar to those described for ΔpknG, including phagosomal maturation. Overexpression of PknG in the secA2 mutant restored its localization to the cell envelope. Importantly, PknG-overexpression also partially restored the virulence of the secA2 mutant, as indicated by enhanced infectivity in zebrafish embryos and restored inhibition of phagosomal maturation. These results suggest that SecA2-dependent membrane localization of PknG is an important determinant for M. marinum virulence.
The pathogen Mycobacterium tuberculosis employs a range of ESX-1 substrates to manipulate the host and build a successful infection. Although the importance of ESX-1 secretion in virulence is well established, the characterization of its individual components and the role of individual substrates is far from complete. Here, we describe the functional characterization of the Mycobacterium marinum accessory ESX-1 proteins EccA1, EspG1 and EspH, i.e. proteins that are neither substrates nor structural components. Proteomic analysis revealed that EspG1 is crucial for ESX-1 secretion, since all detectable ESX-1 substrates were absent from the cell surface and culture supernatant in an espG1 mutant. Deletion of eccA1 resulted in minor secretion defects, but interestingly, the severity of these secretion defects was dependent on the culture conditions. Finally, espH deletion showed a partial secretion defect; whereas several ESX-1 substrates were secreted in normal amounts, secretion of EsxA and EsxB was diminished and secretion of EspE and EspF was fully blocked. Interaction studies showed that EspH binds EspE and therefore could function as a specific chaperone for this substrate. Despite the observed differences in secretion, hemolytic activity was lost in all M. marinum mutants, implying that hemolytic activity is not strictly correlated with EsxA secretion. Surprisingly, while EspH is essential for successful infection of phagocytic host cells, deletion of espH resulted in a significantly increased virulence phenotype in zebrafish larvae, linked to poor granuloma formation and extracellular outgrowth. Together, these data show that different sets of ESX-1 substrates play different roles at various steps of the infection cycle of M. marinum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.