Gelatin is a very promising matrix material for in vitro cell culture and tissue engineering, e.g. due to its native RGD content. For the generation of medical soft tissue implants chemical modification of gelatin improves the mechanical properties of gelatin hydrogels and the viscous behavior of gelatin solutions for liquid handling. We present a systematic study on the influence of high degrees of methacrylation on the properties of gelatin solutions and photo-chemically crosslinked hydrogels. Changes from shear thinning to shear thickening behavior of gelatin solutions were observed depending on mass fraction and degree of methacrylation. Degrees of swelling of crosslinked hydrogels ranged from 194 to 770 % and storage moduli G' from 368 to 5 kPa, comparable to various natural tissues including several types of cartilage. Crosslinked gels proofed to be cytocompatible according to extract testings based on DIN ISO 10933-5 and in contact with porcine chondrocytes.
Double chemical functionalization of gelatin by methacrylation and acetylation of free amino groups enables control over both the viscous behavior of its solutions and the mechanical properties of the resulting hydrogels after photochemical crosslinking. The degree of methacrylation is controlled by the molar excess of methacrylic anhydride applied. Tenfold molar excess leads to highly methacrylated gelatin (GM10), resulting in solutions with low viscosities within the inkjet-printable range (10 wt%: 3.3 ± 0.5 mPa s, 37 °C) and crosslinked hydrogels with high storage moduli G′ (10 wt%: 15.2 ± 6.4 kPa). Twofold excess of methacrylic anhydride leads to less methacrylated gelatin (GM2) proper for preparation of soft hydrogels (10 wt%: G′ = 9.8 ± 4.6 mPa s) but its solutions are highly viscous (10 wt%: 14.2 ± 1.1 mPa s, 37 °C) and thus prone to clogging printing nozzles. Here we show that additional introduction of acetyl functionalities into GM2 results in a significant decrease in solution viscosity (10 wt%: 2.9 ± 0.2 mPa s, 37 °C) and prevention of physical gel formation. In such a manner twofold functionalized gelatin can be inkjet-printed while the degree of chemical crosslinking remains low and the resulting gels are soft. Thus, by adjustable twofold modification of gelatin, i.e. inserting photochemically reactive and inert groups, a versatile bioink for inkjet bioprinting is created, which allows for addressing ECM based hydrogel matrices with a broad range of physical properties. Moreover, bioinks are proven to be cytocompatible and proper for inkjet printing of viable mammalian cells
Cross-linkable gelatin methacryloyl (GM) is widely used for the generation of artificial extracellular matrix (ECM) in tissue engineering. However, the quantification of modified groups in GM is still an unsolved issue, although this is the key factor for tailoring the physicochemical material properties. In this contribution, H-C-HSQC NMR spectra are used to gain detailed structural information on GMs and of 2-fold modified gelatin containing methacryloyl and acetyl groups (GMAs). Distinctive identification of methacrylate, methacrylamide, and acetyl groups present in GMs and GMAs revealed an overlap of methacrylamide and modified hydroxyproline signals in the H NMR spectrum. Considering this, we suggest a method to quantify methacrylate and methacrylamide groups in GMs precisely based on simpleH NMR spectroscopy with an internal standard. Quantification of acetylation in GMAs is also possible, yet, 2D NMR spectra are necessary. The described methods allow direct quantification of modified groups in gelatin derivatives, making them superior to other, indirect methods known so far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.