Pin1 is an essential and conserved mitotic peptidyl-prolyl isomerase (PPIase) that is distinct from members of two other families of conventional PPIases, cyclophilins and FKBPs (FK-506 binding proteins). In response to their phosphorylation during mitosis, Pin1 binds and regulates members of a highly conserved set of proteins that overlaps with antigens recognized by the mitosis-specific monoclonal antibody MPM-2. Pin1 is here shown to be a phosphorylation-dependent PPIase that specifically recognizes the phosphoserine-proline or phosphothreonine-proline bonds present in mitotic phosphoproteins. Both Pin1 and MPM-2 selected similar phosphorylated serine-proline-containing peptides, providing the basis for the specific interaction between Pin1 and MPM-2 antigens. Pin1 preferentially isomerized proline residues preceded by phosphorylated serine or threonine with up to 1300-fold selectivity compared with unphosphorylated peptides. Pin1 may thus regulate mitotic progression by catalyzing sequence-specific and phosphorylation-dependent proline isomerization.
The enzyme peptidyl-prolyl cis-trans isomerase (PPIase) was recently discovered in mammalian tissues and purified from porcine kidney. It catalyses the slow cis-trans isomerization of proline peptide (Xaa-Pro) bonds in oligopeptides and accelerates slow, rate-limiting steps in the folding of several proteins. Here, we report the N-terminal sequence of PPIase together with further chemical and enzymatic properties. The results indicate that this enzyme is probably identical to cyclophilin, a recently discovered mammalian protein which binds tightly to cyclosporin A (CsA). Cyclophilin is thought to be linked to the immunosuppressive action of CsA. The first 38 amino-acid residues of porcine PPIase and of bovine cyclophilin are identical and the two proteins both have a relative molecular mass of about 17,000 (ref. 7). The catalysis of prolyl isomerization in oligopeptides and of protein folding by PPIase are strongly inhibited in the presence of low levels of CsA. The activities of both PPIase and cyclophilin depend on a single sulphydryl group. At present it is unknown whether the inhibition of prolyl isomerase activity is related with the immunosuppressive action of CsA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.