This paper considers the problem of numerically evaluating American option prices when the dynamics of the underlying are driven by both stochastic volatility following the square root process of Heston (1993), and by a Poisson jump process of the type originally introduced by Merton (1976). We develop a method of lines algorithm to evaluate the price as well as the delta and gamma of the option, thereby extending the method developed by Meyer (1998) for the case of jump-diffusion dynamics. The accuracy of the method is tested against two numerical methods that directly solve the integro-partial differential pricing equation. The first is an extension to the jump-diffusion situation of the componentwise splitting method of Ikonen & Toivanen (2007). The second method is a Crank-Nicolson scheme that is solved using projected successive over relaxation and which is taken as the benchmark for the price. The relative efficiency of these methods for computing the American call option price, delta, gamma and free boundary is analysed. If one seeks an algorithm that gives not only the price but also the delta and gamma to the same level of accuracy for a given computational effort then the method of lines seems to perform best amongst the methods considered.
The calculation of the nuclear-magnetic-resonance spin–lattice relaxation time has been extended to include molecules which approximate an axially symmetric ellipsoid and have internal motion about an axis at any constant angle to the symmetry axis of the ellipsoid. The calculation is carried out explicitly for two models of internal motion. These are, random reorientation among three equivalent positions 120° apart, and rotational diffusion.
An implicit finite difference method for the multidimensional Stefan problem is discussed. The classical problem with discontinuous enthalpy is replaced by an approximate Stefan problem with continuous piecewise linear enthalpy. An implicit time approximation reduces this formulation to a sequence of monotone elliptic problems which are solved by finite difference techniques. It is shown that the resulting nonlinear algebraic equations are solvable with a Gauss-Seidel method and that the discretized solution converges to the unique weak solution of the Stefan problem as the time and space mesh size approaches zero.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.