Previous research has established that surfaces with tiny ribs (riblets) aligned in the streamwise direction can reduce the turbulent wall-shear stress below that of a smooth surface. Typical skin-friction reductions have been found to be about 5%. The results of the present investigation, however, demonstrate a considerable improvement over this value. This improvement is achieved by a systematic experimental optimization which has been guided by theoretical concepts.A key feature of our experiments is the utilization of an oil channel. Previous experiments in wind tunnels had to contend with very small riblet dimensions which typically had a lateral rib spacing of about 0.5 mm or less. By contrast, in our oil channel, the ribs can have a lateral spacing of between about 2 and 10 mm. This increased size of the surface structures enables test surfaces to be manufactured with conventional mechanical methods, and it also enables us to build test surfaces with adjustable geometry. In addition, the Berlin oil channel has a novel shear stress balance with an unprecedented accuracy of ±0.3%. This latter feature is a prerequisite for a systematic experimental optimization.In the present investigation, surfaces with longitudinal ribs and additional slits are studied. The experiments cover a fairly large range of parameters so that the drag reduction potential of a surface with ribs and/or slits is worked out conclusively. A large parameter range is made possible because of the adjustability of the surfaces as well as the automatic operation of the oil channel. In particular, the following tests were run:(i) Shear stress measurements with conventional riblet configurations, i.e. with triangular and semi-circular grooves, have been carried out. These measurements were necessary in order to establish the connection between our oil channel data and previous data from wind tunnels. As was previously established, we found a drag reduction of about 5%.(ii) An adjustable surface with longitudinal blade ribs and with slits was built and tested. Both groove depth and slit width could be varied separately and continuously during the experiment. It turned out, that slits in the surface did not contribute to the drag reduction. Nevertheless, these investigations show how perforated surfaces (e.g. for boundary-layer control) can be designed for minimal parasitic drag. On the other hand, with closed slits, an optimal groove depth for the rib surface could be determined, i.e. half of the lateral rib spacing. For this configuration, we found an 8.7% skin-friction reduction. By carefully eliminating deleterious effects (caused by little gaps, etc.), the skin-friction reduction could be improved to a record value of 9.9%.(iii) A quantitative comparison between theory and experiment was carried out. The theory is based on the assumption that riblets impede the fluctuating turbulent crossflow near the wall. In this way, momentum transfer and shear stress are reduced. The simplified theoretical model proposed by Luchini (1992) is supported by the present experiments.(iv) For technological applications of riblets, e.g. on long-range commercial aircraft, the above thin-blade ribs are not practical. Therefore, we have devised a surface that combines a significantly improved performance (8.2 %) with a geometry which exhibits better durability and enables previously developed manufacturing methods for plastic riblet film production to be used. Our riblet geometry exhibits trapezoidal grooves with wedge-like ribs. The flat floor of the trapezoidal grooves permits an undistorted visibility through the transparent riblet film which is essential for crack inspection on aircraft.
For drag reduction research an oil channel has been designed and built. It is also well suited for investigations on turbulent flow and in particular on the dynamics of the viscous sublayer near the wall. The thickness of the viscous sublayer (y § = 5) can be varied between 1 and 4 mm. Surfaces with longitudinal ribs ("riblets"), which are known to reduce drag, can have fairly large dimensions. The lateral spacing of the ribs can lie between 3 and 10 ram, as compared to about 0.5 mm spacing for conventional wind tunnels. It has been proved by appropriate tests that the oil channel data are completely equivalent to data from other facilities and with other mean flow geometries. However, the shear stress data from the new oil channel are much more accurate than previous data due to a novel differential shear force balance with an accuracy of + 0.2 %. In addition to shear stress measurements, velocity fluctuation measurements can be carried out with hot wire or hot film probes. In order to calibrate these probes, a moving sled permits to emulate the flow velocities with the fluid in the channel at rest. A number of additional innovations contribute to the improvement of the measurements, such as, e.g., (i) novel adjustable turbulators to maintain equilibrium turbulence in the channel, (ii) a "bubble trap" to avoid bubbles in the channel at high flow velocities, (iii) a simple method for the precision calibration of manometers, and (iv) the elimination of (Coulomb) friction in ball bearings. This latter fairly general invention is used for the wheels of the calibration unit of the balance. The channel has a cross section of 25 x 85 cm and is 11 m long. It is filled with about 4.5 metric tons of baby oil (white paraffine oil), which is transparent and odorless like water. The kinematic viscosity of the oil is v = 1.2 x 10-s m2/s, and the highest (average) velocity is 1.29 m/s. Thus, the Reynolds number range (calculated with the channel width, 0.25 m) lies between 5,000 and 26,800 for fully established turbulent flow.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.