A solid state, electronically addressable, bistable [2]catenane-based molecular switching device was fabricated from a single monolayer of the [2]catenane, anchored with phospholipid counterions, and sandwiched between an n-type polycrystalline silicon bottom electrode and a metallic top electrode. The device exhibits hysteretic (bistable) current/voltage characteristics. The switch is opened at +2 volts, closed at -2 volts, and read at approximately 0.1 volt and may be recycled many times under ambient conditions. A mechanochemical mechanism for the action of the switch is presented and shown to be consistent with temperature-dependent measurements of the device operation.
An acyclic polyether 1a, incorporating a central tetrathiafulvalene (TTF) electron donor unit and two 4-tert-butylphenoxy groups at its termini, has been synthesized. Two macrocyclic polyethers containing two different electron donors, namely a TTF unit with, in one case, a 1,4-dioxybenzene ring (2a), and, in the other case (2b), a 1,5-dioxynaphthalene ring system, have also been synthesized. These two macrocyclic polyethers have been mechanically interlocked in kinetically controlled template-directed syntheses with cyclobis(paraquat-p-phenylene) cyclophane (3(4+)) to afford the [2]catenanes 2a/3(4+) and 2b/3(4+), respectively. X-ray crystallography reveals that the [2]-catenane 2b/3(4+) has the TTF unit of 2b located inside the cavity of 3(4+). The spectroscopic (UV/vis and 1H NMR) and electrochemical properties of compounds 1a, 2a, 2b, 2a/3(4+), and 2b/3(4+) and of the [2]pseudorotaxane 1a.3(4+) were investigated. The absorption and emission properties of the mono- and dioxidized forms of the TTF unit in these various species have also been studied. The results obtained in acetonitrile solution can be summarized as follows. (a) While TTF2+ exhibits a strong fluorescence, no emission can be observed for the TTF2+ units contained in the polyethers and in their pseudorotaxanes and catenanes. (b) A donor-acceptor absorption band is observed upon two-electron oxidation of the TTF unit in the macrocyclic polyethers 2a and 2b. (c) The spontaneous self-assembly of 1a and 3(4+) to give the [2]pseudorotaxane 1a.3(4+) is strongly favored (Kass. = 5 x 10(5) L mol-1) but slow (at 296 K, k = 11.3 L mol-1 s-1 and delta G++ = 15.9 kcal mol-1) because of the steric hindrance associated with the bulky end groups of 1a. (d) In the pseudorotaxane 1a.3(4+), the reversible displacement of the cyclophane from the TTF unit in the threadlike substrate occurs on oxidation/reduction of its electroactive components. (e) Switching between the two translational isomers of the catenanes 2a/3(4+) and 2b/3(4+) occurs by cyclic oxidation and reduction of the TTF unit contained in 2a and in 2b, respectively. (f) Addition of o-chloroanil to the pseudorotaxane 1a.3(4+) and to the catenanes 2a/3(4+) and 2b/3(4+) causes the displacement of the TTF unit from the cavity of the cyclophane 3(4+) because of the formation of an adduct between the TTF unit and o-chloroanil.
A mechanical switch in a [2]catenane, made up of a cyclobis(paraquat-p-phenylene) tetracation interlocked with a macrocyclic polyether containing a redox-active tetrathiafulvalene (TTF) unit and a 1,5-dioxynaphthalene ring system, can be thrown either chemically or electrochemically. The neutral TTF unit resides "inside" the tetracationic cyclophane in the reduced state and "alongside" it in the oxidized species (TTF / TTF ). Switching between the reduced (I ) and oxidized state (I (I )) is accompanied by a dramatic color change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.