A series of unprecedented organoiron complexes of the formal oxidation states -2, 0, +1, +2, and +3 is presented, which are largely devoid of stabilizing ligands and, in part, also electronically unsaturated (14-, 16-, 17- and 18-electron counts). Specifically, it is shown that nucleophiles unable to undergo beta-hydride elimination, such as MeLi, PhLi, or PhMgBr, rapidly reduce Fe(3+) to Fe(2+) and then exhaustively alkylate the metal center. The resulting homoleptic organoferrate complexes [(Me 4Fe)(MeLi)][Li(OEt 2)] 2 ( 3) and [Ph 4Fe][Li(Et 2O) 2][Li(1,4-dioxane)] ( 5) could be characterized by X-ray crystal structure analysis. However, these exceptionally sensitive compounds turned out to be only moderately nucleophilic, transferring their organic ligands to activated electrophiles only, while being unable to alkylate (hetero)aryl halides unless they are very electron deficient. In striking contrast, Grignard reagents bearing alkyl residues amenable to beta-hydride elimination reduce FeX n ( n = 2, 3) to clusters of the formal composition [Fe(MgX) 2] n . The behavior of these intermetallic species can be emulated by structurally well-defined lithium ferrate complexes of the type [Fe(C 2H 4) 4][Li(tmeda)] 2 ( 8), [Fe(cod) 2][Li(dme)] 2 ( 9), [CpFe(C 2H 4) 2][Li(tmeda)] ( 7), [CpFe(cod)][Li(dme)] ( 11), or [Cp*Fe(C 2H 4) 2][Li(tmeda)] ( 14). Such electron-rich complexes, which are distinguished by short intermetallic Fe-Li bonds, were shown to react with aryl chlorides and allyl halides; the structures and reactivity patterns of the resulting organoiron compounds provide first insights into the elementary steps of low valent iron-catalyzed cross coupling reactions of aryl, alkyl, allyl, benzyl, and propargyl halides with organomagnesium reagents. However, the acquired data suggest that such C-C bond formations can occur, a priori, along different catalytic cycles shuttling between metal centers of the formal oxidation states Fe(+1)/Fe(+3), Fe(0)/Fe(+2), and Fe(-2)/Fe(0). Since these different manifolds are likely interconnected, an unambiguous decision as to which redox cycle dominates in solution remains difficult, even though iron complexes of the lowest accessible formal oxidation states promote the reactions most effectively.
Nitride- and alkylidyne complexes of molybdenum endowed with triarylsilanolate ligands are excellent (pre)catalysts for alkyne-metathesis reactions of all sorts, since they combine high activity with an outstanding tolerance toward polar and/or sensitive functional groups. Structural and reactivity data suggest that this promising application profile results from a favorable match between the characteristics of the high-valent molybdenum center and the electronic and steric features of the chosen Ar(3)SiO groups. This interplay ensures a well-balanced level of Lewis acidity at the central atom, which is critical for high activity. Moreover, the bulky silanolates, while disfavoring bimolecular decomposition of the operative alkylidyne unit, do not obstruct substrate binding. In addition, Ar(3)SiO groups have the advantage that they are more stable within the coordination sphere of a high-valent molybdenum center than tert-alkoxides, which commonly served as ancillary ligands in previous generations of alkyne metathesis catalysts. From a practical point of view it is important to note that complexes of the general type [(Ar(3)SiO)(3)Mo≡X] (X = N, CR; R = aryl, alkyl, Ar = aryl) can be rendered air-stable with the aid of 1,10-phenanthroline, 2,2'-bipyridine or derivatives thereof. Although the resulting adducts are themselves catalytically inert, treatment with Lewis acidic additives such as ZnCl(2) or MnCl(2) removes the stabilizing N-donor ligand and gently releases the catalytically active template into the solution. This procedure gives excellent results in alkyne metathesis starting from air-stable and hence user-friendly precursor complexes. The thermal and hydrolytic stability of representative molybdenum alkylidyne and -nitride complexes of this series was investigated and the structure of several decomposition products elucidated.
Previously unknown ring closing metathesis reactions of diynes are described which open an efficient and stereoselective entry into macrocyclic (Z)-alkenes if the resulting cycloalkyne products are subjected to Lindlar reduction. This new two-step strategy offers significant advantages in stereochemical terms over conventional RCM of dienes which usually leads to (E,Z)-mixtures when applied to the formation of large rings. The tungsten alkylidyne complex (tBuO)3W⋮CCMe3(1a) and analogues thereof as well as a structurally unknown species formed in situ from Mo(CO)6 and p-chlorophenol effect the crucial alkyne metathesis reactions in a highly efficient manner, with the former catalyst being more tolerant toward structural variations of the substrates and polar functional groups. Applications to the stereoselective synthesis of the olfactory compounds ambrettolide 23 and yuzu lactone 24, the insect repellent azamacrolides epilachnene 31 and homoepilachnene 33, as well as to the fully functional building block 64 required for a total synthesis of the cytotoxic alkaloid nakadomarin A 51 highlight the relevance of this new concept for natural product chemistry. In the latter case, the diyne substrate 62 necessary for ring closing alkyne metathesis was obtained via a novel furan synthesis relying on a palladium-catalyzed opening of a vinyl epoxide followed by an oxidative cyclization of the heterocyclic ring
Oxidative insertion of [Pd(PPh3)4] or [Ni(cod)2]/PPh3 into the C-Cl bond of various 2-chloroimidazolinium- and other -amidinium salts affords metal-diaminocarbene complexes in good to excellent yields. This procedure is complementary to existing methodology in which the central metal does not change its oxidation state, and therefore allows to incorporate carbene fragments that are difficult to access otherwise. The preparation of a variety of achiral as well as enantiomerically pure, chiral metal-NHC complexes (NHC = N-heterocyclic carbene) and metal complexes with acyclic diaminocarbene ligands illustrates this aspect. Furthermore it is shown that oxidative insertion also paves a way to prototype Fischer carbenes of Pd(II). Since the required starting materials are readily available from urea- or thiourea derivatives, this novel approach allows for substantial structural variations of the ligand backbone. The catalytic performance of the resulting library of nickel- and palladium-carbene complexes has been evaluated by applications to prototype Suzuki-, Heck-, and Kumada-Corriu cross-coupling reactions as well as Buchwald-Hartwig aminations. It was found that even Fischer carbenes show appreciable catalytic activity. Moreover, representative examples of all types of neutral and cationic metal-carbene complexes formed in this study have been characterized by X-ray crystallography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.