Fusion proteins of monomeric alpha-glucosidase from Saccharomyces cerevisiae containing N- or C-terminal hexa-arginie peptides were expressed in the cytosol of Escherichia coli in soluble form. The polycationic peptide moieties allow noncovalent binding of the denatured fusion proteins to a polyanionic solid support. Upon removal of the denaturant, refolding of the matrix-bound protein can proceed without perturbation by aggregation. However, nonspecific interactions of the denatured polypeptide, or of folding intermediates, with the matrix cause a drastic decrease in renaturation under suboptimal folding conditions. At low salt concentrations, ionic interactions of the refolding polypeptide with the matrix result in lower yields of renaturation. At higher salt concentrations, renaturation is prevented by hydrophobic interactions with the matrix. Apart from ionic strength, renaturation of the denatured matrix-bound fusion protein must be optimized with respect to pH, temperature, cosolvents, and matrix material used. Under optimum conditions, immobilized alpha-glucosidase can be renatured with a high yield at protein concentrations up to 5 mg/ml, whereas folding of the wild-type enzyme in solution is feasible only at an extremely low protein concentration (15 micrograms/ml). Thus, folding of the immobilized alpha-glucosidase allows an extremely high yield of the renaturated model protein. The technology should be applicable to other proteins that tend to aggregate during refolding.
Pyruvate oxidase from Lactobacillus plantarum is a homotetrameric flavoprotein with strong binding sites for FAD, TPP, and a divalent cation. Treatment with acid ammonium sulfate in the presence of 1.5 M KBr leads to the release of the cofactors, yielding the stable apoenzyme. In the present study, the effects of FAD, TPP, and Mn2+ on the structural properties of the apoenzyme and the reconstitution of the active holoenzyme from its constituents have been investigated.As shown by circular dichroism and fluorescence emission, as well as by Nile red binding, the secondary and tertiary structures of the apoenzyme and the holoenzyme do not exhibit marked differences. The quaternary structure is stabilized significantly in the presence of the cofactors. Size-exclusion high-performance liquid chromatography and analytical ultracentrifugation demonstrate that the holoenzyme retains its tetrameric state down to 20 pg/mL, whereas the apoenzyme shows stepwise tetramer-dimer-monomer dissociation, with the monomer as the major component, at a protein concentration of <20 pg/mL.In the presence of divalent cations, the coenzymes FAD and TPP bind to the apoenzyme, forming the inactive binary FAD or TPP complexes. Both FAD and TPP affect the quaternary structure by shifting the equilibrium of association toward the dimer or tetramer. High FAD concentrations exert significant stabilization against urea and heat denaturation, whereas excess TPP has no effect.Reconstitution of the holoenzyme from its components yields full reactivation. The kinetic analysis reveals a compulsory sequential mechanism of cofactor binding and quaternary structure formation, with TPP binding as the first step. The binary TPP complex (in the presence of 1 mM Mn2+/TPP) is characterized by a dimer-tetramer equilibrium transition with an association constant of K, = 2 x lo7 M" . The apoenzyme TPP complex dimer associates with the tetrameric holoenzyme in the presence of 10 pM FAD. This association step obeys second-order kinetics with an association rate constant k = 7.4 x lo3 M" s-' at 20 "C. FAD binding to the tetrameric binary TPP complex is too fast to be resolved by manual mixing.
We have designed a new method for enzyme immobilization using a fusion protein of yeast alpha-glucosidase containing at its C-terminus a polycationic hexa-arginine fusion peptide. This fusion protein can be directly adsorbed from crude cell extracts on polyanionic matrices in a specific, oriented fashion. Upon noncovalent immobilization by polyionic interactions, the stability of the fusion protein is not affected by pH-, urea-, or thermal-denaturation. Furthermore, the enzymatic properties (specific activity at increasing enzyme concentration, Michaelis constant, or activation energy of the enzymatic reaction) are not influenced by this noncovalent coupling. The operational stability of the coupled enzyme under conditions of continuous substrate conversion is, however, increased significantly compared to the soluble form. Fusion proteins containing polyionic peptide sequences are proposed as versatile tools for the production of immobilized enzyme catalysts.
Amino acid sequence comparisons between domains of cyclosporin synthetase have been used to identify regions of the sequence which are responsible for the recognition and binding of the individual amino acids. Using a limited set of selection rules it was possible to identify three amino acid positions in the subdomain sequences which are responsible for amino acid specificity. Homology with the firefly luciferase protein shows that these three key residues are close to each other and line the surface of a putative specific substrate binding pocket located on the amino acyl-adenylation subdomain. These results allow us to predict a large number of cyclosporin synthetase mutants which could be used to synthesise alternative cyclosporin-like peptides.
Point mutations in the gene of pyruvate oxidase from Lactobacillusplantarum, with proline residue 178 changed to serine, serine 188 to asparagine, and alanine 458 to valine, as well as a combination of the three single point mutations, lead to a significant functional stabilization of the protein. The enzyme is a tetrameric flavoprotein with tightly bound cofactors, FAD, TPP, and divalent metal ions. Thus, stabilization may be achieved either at the level of tertiary or quaternary interactions,or by enhanced cofactor binding. In order to discriminate between these alternatives, unfolding, dissociation, and cofactor binding of the mutant proteins were analyzed. The point mutations do not affect the secondary and tertiary structure, as determined by circular dichroism and protein fluorescence. Similarly, the amino acid substitutions neither modulate the enzymatic properties of the mutant proteins nor do they stabilize the structural stability of the apoenzymes. This holds true for both the local and the global structure with unfolding transitions around 2.5 M and 5 M urea, respectively. On the other hand, deactivation of the holoenzyme (by urea or temperature) is significantly decreased.The most important stabilizing effect is caused by the Ala-Val exchange in the C-terminal domain of the molecule. Its contribution is close to the value observed for the triple mutant, which exhibits maximum stability, with a shift in the thermal transition of ca. 10 "C. The effects of the point mutations on FAD binding and subunit association are interconnected. Because FAD binding is linked to oligomerization, the stability of the mutant apoenzyme-FAD complexes is increased. Accordingly, mutants with maximum apparent FAD binding exhibit maximum stability. Analysis of the quaternary structure of the mutant enzymes in the absence and in the presence of coenzymes gives clear evidence that both improved ligand binding and subunit interactions contribute to the observed thermal stabilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.