Contamination of food and feed with mycotoxins is a worldwide problem. At present, acute mycotoxicosis caused by high doses is rare in humans and animals. Ingestion of low to moderate amounts of Fusarium mycotoxins is common and generally does not result in obvious intoxication. However, these low amounts may impair intestinal health, immune function and/or pathogen fitness, resulting in altered host pathogen interactions and thus a different outcome of infection. This review summarizes the current state of knowledge about the impact of Fusarium mycotoxin exposure on human and animal host susceptibility to infectious diseases. On the one hand, exposure to deoxynivalenol and other Fusarium mycotoxins generally exacerbates infections with parasites, bacteria and viruses across a wide range of animal host species. Well-known examples include coccidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry, enteric septicemia of catfish, swine respiratory disease, aspergillosis in poultry and rabbits, reovirus infection in mice and Porcine Reproductive and Respiratory Syndrome Virus infection in pigs. However, on the other hand, T-2 toxin has been shown to markedly decrease the colonization capacity of Salmonella in the pig intestine. Although the impact of the exposure of humans to Fusarium toxins on infectious diseases is less well known, extrapolation from animal models suggests possible exacerbation of, for instance, colibacillosis and salmonellosis in humans, as well.
Emerging Fusarium and Alternaria mycotoxins gain more and more interest due to their frequent contamination of food and feed, although in vivo toxicity and toxicokinetic data are limited. Whereas the Fusarium mycotoxins beauvericin, moniliformin and enniatins particularly contaminate grain and grain-based products, Alternaria mycotoxins are also detected in fruits, vegetables and wines. Although contamination levels are usually low (µg/kg range), higher contamination levels of enniatins and tenuazonic acid may occasionally occur. In vitro studies suggest genotoxic effects of enniatins A, A1 and B1, beauvericin, moniliformin, alternariol, alternariol monomethyl ether, altertoxins and stemphyltoxin-III. Furthermore, in vitro studies suggest immunomodulating effects of most emerging toxins and a reproductive health hazard of alternariol, beauvericin and enniatin B. More in vivo toxicity data on the individual and combined effects of these contaminants on reproductive and immune system in both humans and animals is needed to update the risk evaluation by the European Food Safety Authority. Taking into account new occurrence data for tenuazonic acid, the complete oral bioavailability, the low total body clearance in pigs and broiler chickens and the limited toxicity data, a health risk cannot be completely excluded. Besides, some less known Alternaria toxins, especially the genotoxic altertoxins and stemphyltoxin III, should be incorporated in risk evaluation as well.
Intestinal health is determined by host (immunity, mucosal barrier), nutritional, microbial and environmental factors. Deficiencies in intestinal health are associated with shifts in the composition of the intestinal microbiome (dysbiosis), leakage of the mucosal barrier and/or inflammation. Since the ban on growth promoting antimicrobials in animal feed, these dysbiosis-related problems have become a major issue, especially in intensive animal farming. The economical and animal welfare consequences are considerable. Consequently, there is a need for continuous monitoring of the intestinal health status, particularly in intensively reared animals, where the intestinal function is often pushed to the limit. In the current review, the recent advances in the field of intestinal health biomarkers, both in human and veterinary medicine are discussed, trying to identify present and future markers of intestinal health in poultry. The most promising new biomarkers will be stable molecules ending up in the feces and litter that can be quantified, preferably using rapid and simple pen-side tests. It is unlikely, however, that a single biomarker will be sufficient to follow up all aspects of intestinal health. Combinations of multiple biomarkers and/or metabarcoding, metagenomic, metatranscriptomic, metaproteomic and metabolomic approaches will be the way to go in the future. Candidate biomarkers currently are being investigated by many research groups, but the validation will be a major challenge, due to the complexity of intestinal health in the field.
An outbreak of necrotic enteritis (NE) is a complex process requiring one or a number of predisposing factors rather than just the presence of pathogenic Clostridium perfringens. Examples are dietary influences, such as high levels of non-starch polysaccharides and fishmeal, and factors that evoke epithelial cell damage, such as Fusarium mycotoxins in feed and Eimeria infections. Recent studies have shown that different predisposing factors induce similar shifts in the intestinal microbiota composition. Butyrate-producing-strains of the Ruminococcaceae family are decreased in abundance by both fishmeal and Eimeria. Similarly, a decreased abundance of butyrate-producing-strains belonging to the Lachnospiraceae family has been induced by fishmeal. Also shifts are observed in the lactic acid-producing bacteria, such as decreased abundance of Lactobacillus johnsonii or Weissella confusa, when broilers were fed a fishmeal-based diet or a Fusarium mycotoxin contaminated diet. Finally, the abundance of Candidatus Savagella was decreased in broilers following Eimeria challenge or feeding a fumonisins contaminated diet. The nature of the microbiota shifts indicate that immune modulatory actions of the intestinal microbiota may play a critical role in the effect on the necrosis inducing activity of C. perfringens. Indeed, colonization with butyrate-producing bacteria plays a key role in counteracting inflammation in the gut and preserving intestinal integrity, while Candidatus Savagella is involved in stimulating Th17 and immunoglobulin A responses. Lactic acid bacteria stimulate colonization of lactate-utilizing and butyrate-producing Lachnospiraceae. Future research needs to clarify the role of the microbiota changes in the pathogenesis of NE.
Mycotoxins are secondary metabolites of fungi that contaminate food and feed and have a significant negative impact on human and animal health and productivity. The tropical condition in Sub-Saharan Africa (SSA) together with poor storage of feed promotes fungal growth and subsequent mycotoxin production. Aflatoxins (AF) produced by Aspergillus species, fumonisins (FUM), zearalenone (ZEN), T-2 toxin (T-2), and deoxynivalenol (DON) produced by Fusarium species, and ochratoxin A (OTA) produced by Penicillium and Aspergillus species are well-known mycotoxins of agricultural importance. Consumption of feed contaminated with these toxins may cause mycotoxicoses in animals, characterized by a range of clinical signs depending on the toxin, and losses in the animal industry. In SSA, contamination of dairy feed with mycotoxins has been frequently reported, which poses a serious constraint to animal health and productivity, and is also a hazard to human health since some mycotoxins and their metabolites are excreted in milk, especially aflatoxin M1. This review describes the major mycotoxins, their occurrence, and impact in dairy cattle diets in SSA highlighting the problems related to animal health, productivity, and food safety and the up-to-date post-harvest mitigation strategies for the prevention and reduction of contamination of dairy feed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.