SUMMARY
The eutardigrade Milnesium tardigradum can undergo cryptobiosis,i.e. entry into a reversible ametabolic stage induced by dehydration, cooling and, probably, osmotic and anoxic stress. For the first time in tardigrades,we described partial sequences of three heat-shock protein (hsp70family) genes and examined gene expression on the way from an active to a cryptobiotic and back to an active stage again. Results showed different patterns of gene expression in the hsp70 isoforms. All three isoforms seem to be true heat-shock proteins since transcription could be clearly enhanced by temperature elevation. Isoform 1 and, at a lower level, isoform 3 do not seem to have a specific function for cryptobiosis. By contrast,transcription of isoform 2 is significantly induced in the transitional stage between the active and the cryptobiotic stage, resulting in a comparatively high mRNA copy number also during cryptobiosis. This pattern of induction implies that isoform 2 is the most relevant hsp70 gene for M. tardigradum individuals entering the cryptobiotic stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.