The major autolysin of Staphylococcus aureus (AtlA) and of Staphylococcus epidermidis (AtlE) are well-studied enzymes. Here we created an atlA deletion mutant in S. aureus that formed large cell clusters and was biofilm-negative. In electron micrographs, the mutant cells were distinguished by rough outer cell surface. The mutant could be complemented using the atlE gene from S. epidermidis. To study the role of the repetitive sequences of atlE, we expressed in Escherichia coli the amidase domain encoded by the gene, carrying no repeat regions (amiE) or two repeat regions (amiE-R1,2), or the three repeat regions alone (R1,2,3) as N-terminal His-tag fusion proteins. Only slight differences in the cell wall lytic activity between AmiE and AmiE-R1,2 were observed. The repetitive sequences exhibit a good binding affinity to isolated peptidoglycan and might contribute to the targeting of the amidase to the substrate. AmiE and AmiE-R1,2 have a broad substrate specificity as shown by similar activities with peptidoglycan lacking wall teichoic acid, O-acetylation, or both. As the amidase activity of AtlA and AtlE has not been proved biochemically, we used purified AmiE-R1,2 to determine the exact peptidoglycan cleavage site. We provide the first evidence that the amidase indeed cleaves the amide bond between N-acetyl muramic acid and L-alanine.
SummaryLysostaphin is an extracellular glycylglycine endopeptidase produced by Staphylococcus simulans biovar staphyIolyticus ATCC1362 that lyses staphylococcal cells by hydrolysing the polyglycine interpeptide bridges of the peptidoglycan. Renewed analysis of the sequence of the lysostaphin gene (Iss), and the sequencing of the amino-terminus of purified prolysostaphin and of mature lysostaphin revealed that lysostaphin is organized as a preproprotein of 493 amino acids (aa), with a signal peptide consisting of 36aa, a propeptide of 21 1 aa from which 195 aa are organized in 15 tandem repeats of 13 aa length, and a mature protein of 246aa. Prolysostaphin is processed in the culture supernatant of S. simulans biovar StaphyIoIyficus by an extracellular cysteine protease. Although prolysostaphin was staphylolytically active, the mature lysostaphin was about 4.5-fold more active. The controlled expression in Staphylococcus carnosus of lss and lss with deletions in the prepropeptide region indicated that the tandem repeats of the propeptide are not necessary for protein export or activation of Lss, but keep Lss in a less active state. lntracellularly expressed pro-and mature lysostaphin exert staphylolytic activity in cell-free extracts, but do not affect growth of the corresponding clones. We characterized a lysostaphin immunity factor gene ( / i f ) which is located in the opposite direction to lss. The expression of /if in s. carnosus led to an increase in the serine/glycine ratio of the interpeptide bridges of peptidoglycan from 2 to 35%, suggesting that lysostaphin immunity depends on serine incorporation into the interpeptide bridge. If, in addition to /if, Iss is coexpressed the serinelglycine ratio is further increased to 58%, suggesting that Lss selects for optimal serine incorporation. Lif shows similarity to FemA and FemB
The major pigment produced by Staphylococcus aureus Newman is the deep-yellow carotenoid 4,4'-diaponeurosporene; after prolonged cultivation, this pigment is in part converted to the orange end product staphyloxanthin. From this strain a 3.5-kb DNA fragment was identified which after being cloned into Escherichia coli and Staphylococcus carnosus conferred the ability to produce 4,4'-diaponeurosporene. DNA sequencing of this fragment revealed two open reading frames (ORFs) which are very likely cotranscribed. ORF1 encodes a 254-amino-acid hydrophobic protein, CrtM (M(r), 30,121). The deduced sequence of CrtM exhibits in three domains similarities to the sequences of Saccharomyces cerevisiae and human squalene synthases and phytoene synthases of various bacteria. ORF2 encodes a 448-amino-acid hydrophobic protein, CrtN, with an M(r) of 50,853 whose deduced sequence is similar to those of phytoene desaturases of other bacteria. At the N terminus of CrtN a classical FAD-, NAD(P)-binding domain is found. Spectrophotometry and gas chromatography-mass spectrometry analyses of the carotenoid production of E. coli and S. carnosus clones containing either ORF1 or both ORFs together suggest that ORF1 and ORF2 represent the dehydrosqualene synthase gene (crtM) and the dehydrosqualene desaturase gene (crtN), respectively. The results furthermore suggest that the biosynthesis of 4,4'-diaponeurosporene starts with the condensation of two molecules of farnesyl diphosphate by dehydrosqualene synthase (CrtM); it is shown that the reaction product of this enzyme is dehydrosqualene and not squalene. Dehydrosqualene (4,4'-diapophytoene) is successively dehydrogenated by a desaturase (CrtN) to form the yellow main intermediate 4,4'-diaponeurosporene.
Staphylococcus epidermidis biofilm formation on polymer surfaces is considered a major pathogenicity factor in foreign-body-associated infections. Previously, the 148 kDa autolysin AtlE from S. epidermidis, which is involved in the initial attachment of the cells to polymer surfaces and also binds to the extracellular matrix protein vitronectin, was characterized. Here, the characterization of a novel autolysin/adhesin (Aae) in S. epidermidis is described. Aae was identified as a 35 kDa surface-associated protein that has bacteriolytic activity and binds vitronectin. Its N-terminal amino acid sequence was determined and the respective gene, aae, was cloned. DNA-sequence analysis revealed that aae encodes a deduced protein of 324 amino acids with a predicted molecular mass of 35 kDa. Aae contains three repetitive sequences in its N-terminal portion. These repeats comprise features of a putative peptidoglycan binding domain (LysM domain) found in a number of enzymes involved in cell-wall metabolism and also in some adhesins. Expression of aae by Escherichia coli and subsequent analysis revealed that Aae possesses bacteriolytic activity and adhesive properties. The interaction of Aae with fibrinogen, fibronectin and vitronectin was found to be dose-dependent and saturable and to occur with high affinity, by using the real-time Biomolecular Interaction Analysis (BIA). Aae binds to the Aa-and Bb-chains of fibrinogen and to the 29 kDa N-terminal fragment of fibronectin. In conclusion, Aae is a surface-associated protein with bacteriolytic and adhesive properties representing a new member of the staphylococcal autolysin/adhesins potentially involved in colonization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.