Life implies movement. Most forms of movement in the living world are powered by tiny protein machines known as molecular motors. Among the best known are motors that use sophisticated intramolecular amplification mechanisms to take nanometre steps along protein tracks in the cytoplasm. These motors transport a wide variety of cargo, power cell locomotion, drive cell division and, when combined in large ensembles, allow organisms to move. Motor defects can lead to severe diseases or may even be lethal. Basic principles of motor design and mechanism have now been derived, and an understanding of their complex cellular roles is emerging.
Kinesin and myosin are motor proteins that share a common structural core and bind to microtubules and actin filaments, respectively. While the actomyosin interface has been well studied, the location of the microtubule-binding site on kinesin has not been identified. Using alanine-scanning mutagenesis, we have found that microtubule-interacting kinesin residues are located in three loops that cluster in a patch on the motor surface. The critical residues are primarily positively charged, which is consistent with a primarily electrostatic interaction with the negatively charged tubulin molecule. The core of the microtubule-binding interface resides in a highly conserved loop and helix (L12/alpha5) that corresponds topologically to the major actin-binding domain of myosin. Thus, kinesin and myosin have developed distinct polymer-binding domains in a similar region with respect to their common catalytic cores.
Microtubules are important for the turnover of podosomes, dynamic, actin-rich adhesions implicated in migration and invasion of monocytic cells. The molecular basis for this functional dependency, however, remained unclear. Here, we show that contact by microtubule plus ends critically influences the cellular fate of podosomes in primary human macrophages. In particular, we identify the kinesin KIF1C, a member of the Kinesin-3 family, as a plus-end-enriched motor that targets regions of podosome turnover. Expression of mutation constructs or small interfering RNA-/short hairpin RNA-based depletion of KIF1C resulted in decreased podosome dynamics and ultimately in podosome deficiency. Importantly, protein interaction studies showed that KIF1C binds to nonmuscle myosin IIA via its PTPD-binding domain, thus providing an interface between the actin and tubulin cytoskeletons, which may facilitate the subcellular targeting of podosomes by microtubules. This is the first report to implicate a kinesin in podosome regulation and also the first to describe a function for KIF1C in human cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.