Zero‐shot learning, applied with vision‐language pretrained (VLP) models, is expected to be an alternative to existing deep learning models for defect detection, under insufficient dataset. However, VLP models, including contrastive language‐image pretraining (CLIP), showed fluctuated performance on prompts (inputs), resulting in research on prompt engineering—optimization of prompts for improving performance. Therefore, this study aims to identify the features of a prompt that can yield the best performance in classifying and detecting building defects using the zero‐shot and few‐shot capabilities of CLIP. The results reveal the following: (1) domain‐specific definitions are better than general definitions and images; (2) a complete sentence is better than a set of core terms; and (3) multimodal information is better than single‐modal information. The resulting detection performance using the proposed prompting method outperformed that of existing supervised models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.