According to the practice of temperature control in dam concrete, within a few days after a concrete block is poured, the temperature at the core of the concrete rises rapidly. The maximum temperature may still exceed the standard even under a relatively perfect post-cooling system, which is mostly caused by failure to quickly and correctly judge the development of the early-age temperature. This study investigates concrete temperature at an early age via in situ monitoring data collected from Baihetan arch dam and Wudongde arch dam. A simplified algorithm of temperature prediction is formed, which only considers the heat released by cement hydration and the cooling effect of cooling pipes. The influence of a cooling pipe on the measuring point of the thermometer is investigated, and a simple empirical formula to calculate the cooling effect is obtained. An equation for the rate of hydration temperature rise is achieved by combining measured data and the formula used to calculate the cooling effect. Furthermore, through the explorations of the related data, it is determined that the cement hydration ratio of the two dams is quite low during concreting. On the basis of the data collected from the field, the method to predict temperature proposed in this study is tested and proven.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.