Temporal action detection aims to locate the boundaries of action in the video. The current method based on boundary matching enumerates and calculates all possible boundary matchings to generate proposals. However, these methods neglect the long-range context aggregation in boundary prediction. At the same time, due to the similar semantics of adjacent matchings, local semantic aggregation of densely-generated matchings cannot improve semantic richness and discrimination. In this paper, we propose the end-to-end proposal generation method named Dual Context Aggregation Network (DCAN) to aggregate context on two levels, namely, boundary level and proposal level, for generating high-quality action proposals, thereby improving the performance of temporal action detection. Specifically, we design the Multi-Path Temporal Context Aggregation (MTCA) to achieve smooth context aggregation on boundary level and precise evaluation of boundaries. For matching evaluation, Coarse-to-fine Matching (CFM) is designed to aggregate context on the proposal level and refine the matching map from coarse to fine. We conduct extensive experiments on ActivityNet v1.3 and THUMOS-14. DCAN obtains an average mAP of 35.39% on ActivityNet v1.3 and reaches mAP 54.14% at IoU@0.5 on THUMOS-14, which demonstrates DCAN can generate high-quality proposals and achieve state-of-the-art performance. We release the code at https://github.com/cg1177/DCAN.
In this paper we develop a novel framework for inferring a generative model of network structure representing the causal relations between data for a set of objects characterized in terms of time series. To do this we make use of transfer entropy as a means of inferring directed information transfer between the time-series data. Transfer entropy allows us to infer directed edges representing the causal relations between pairs of time series, and has thus been used to infer directed graph representations of causal networks for time-series data. We use the expectation maximization algorithm to learn a generative model which captures variations in the causal network over time. We conduct experiments on fMRI brain connectivity data for subjects in different stages of the development of Alzheimer's disease (AD). Here we use the technique to learn class exemplars for different stages in the development of the disease, together with a normal control class, and demonstrate its utility in both graph multi-class and binary classifications. These experiments are showing the effectiveness of our proposed framework when the amounts of training data are relatively small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.