This work reported the green and facile fabrication of a versatile lignin-AuNP composite, which was readily and remotely encapsulated to form novel liquid marbles. The marbles can stay suspended in water, and show excellent photothermal conversion properties, as well as visual detection and adsorption towards Pb2+. More importantly, the marbles can simultaneously remotely detect and adsorb Pb2+ via co-precipitation by simply controlling the near infrared (NIR) irradiation. It is believed that the remotely-controllable NIR-responsive lignin-AuNPs liquid marble can be used in Pb2+-related reactions. The liquid marble can be placed in the system at the very beginning of the reaction and stably stays on the surface until the reaction has ended. After reacting, upon remote NIR irradiation, the liquid marble bursts to adsorb Pb2+, and the residual Pb2+ can be collected. This facile manipulation strategy does not use complicated nanostructures or sophisticated equipment, so it has potential applications for channel-free microfluidics, smart microreactors, microengines, and so on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.